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About Myself

« Rising 5th-year Ph.D. candidate at UC Berkeley
advised by Professor Somayeh Sojoudi.

« Research focus:

— Reconciling adversarial robustness and accuracy
of classification models.

— Efficient audio generation through consistency
models.

« Teaching:

— Convex optimization and approximation.




Overview of This Presentation

e Brief intro to adversarial robustness.

« Improving the accuracy-robustness trade-off.
— Mixing classifiers to balance robustness and accuracy.

— Adaptive Smoothing: adaptive mixing ratio.
https://arxiv.org/abs/2301.12554

— MixedNUTS: mix in a nonlinear fashion.
https://arxiv.org/abs/2402.02263
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https://arxiv.org/abs/2301.12554
https://arxiv.org/abs/2402.02263

Adversarial Robustness

« Neural networks are vulnerable

— Small input perturbations elicit .001X
unexpected outputs. R
- _ . adversarial DOG
- For classifiers: misclassifications. CAT Sartuibation

« For control systems: dangerous
actions

+.007 x
Output = Stop Adversarial mask Output = Go
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Adversarial example generation (An optimization formulation)

€
p
e We need a budget for the attack, since the adversarial i
perturbations should be inperceptible by human. o
- A common uncertainty set is an f.-norm-bounded X"’

additive set with radius e: Clean input((low loss)

-~ I. e., a cube around each clean input.

£, perturbation set (X)

o The adversarial examples are usually generated via the following optimization problem:

max  / g(x+9) : Y , where g represents the NN as a function.
d:x+6€X T N—— N~~~
Loss fn " NN output for attacked input Target output
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Defending attacks -- Adversarial training (Robust Optimization)

e One defense method: Adversarial training (train with adversarial data) [Madry et al., 2018, Goodfellow

et al., 2015] .
—- Train robust models via robust optimization. For an uncertainty set X', solve the optimization
problem
min max ¢ x4+ 9 r 1
0 ( S:x+oEX (g (x+9), Y)> * ¥ )
~~~ N—— Regularization

Optimize NN weights Generate attack

. ®
® [ J
o[ %/ e o[ %A o
@ ° ® » ®
® . © —]
& ° @ ¢
o » ® @
Doesn’t Separate [, Norm Balls Robust Decision Boundary

andard training and adversarial training [Madry et al., 2018].
Alternative methods:

* TRADES, Randomized Smoothing.



Accuracy-Robustness Trade-Off

e S -
* Robust models often sacrifice clean | 50
accuracy. g4s
504 gm
. . . 0.3 £ 5
« Theoretically, robust generalization ;
. 0.2
needs much more training data.
663 004 0.32 096 0.97
 Existing methods for alleviating the g py e
trade-off: ]
— Additional real/synthetic training data; ¢, :
— Attack purification; s
— Alternative training loss functions.

Clean accuracy
Improving the Accuracy-Robustness Trade-
Off of Classifiers via Adaptive Smoothing
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Certified Adversarial Robustness
via Randomized Smoothing
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Mixing Classifiers for Better Trade-Off

« What if we combine the wisdom of an accurate model and a robust model?

« Specifically, we “mix” their outputs, resulting in a mixed classifier.

filx) =1 —a)-gi(x) + a- hi(x)

Mixed Accurate Base Robust Base
Classifier Classifier (ABC) Classifier (RBC)

« Should we mix the logits or probabilities?

— Classifiers often use a “Softmax” operation to convert “logits” (—o, +0) to
prediction probabilities (0, 1).
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Empirically comparing the design choices

e We compare the cases with various values of « via the clean accuracy versus attacked accuracy plot:

Better 60 Bett Better
- trade-off etter 60 | trade-off
FRh trade-off
% 3 40 3507
2 3071 g g
z B g 40
e ® 30 1 ®
= © 8
g 204 — 1, No SoftMax g ~ 30 1
5 [IVgi(-)|lp+, No SoftMax @ 204 — 1, No SoftMax @ —— 1, No SoftMax
% _ ||ijanj(-)||p*, No SoftMax < —_— ||Vm?Xg,-(-)||p*, SoftMax < 204 —— ||ijan,-(-)||p*, SoftMax
9 10
= 11Vg()llp+ 10 A [IVMaXg;()||p= [IVMaxg; ()| |~
< wRe,- + No SoftMax — e, SoftMax 10 4 (s SoftMax
7 7
0- 1, SoftMax 04 — 1 SoftMax —— 1, SoftMax
T T T y T T T T T T T T T T 0 T T T T T
84 86 88 90 92 94 96 86 88 920 92 24 % 98 86 88 90 92 24
Clean accuracy of the composite model (constant a). Clean accuracy Clean accuracy
ResNet18+AT, (o ConvNeXT+TRADE, /o ResNet18+AT, /o

Figure 1: Adaptive PGD1¢ accuracy versus clean accuracy for the three different choices of R(x) on CIFAR-10.

e Blue: smoothing with logits. Purple: smoothing with probabilities.

e Conclusion: smoothing should be done on probabilities.
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Mixing Probabilities is Better

« Conclusion: we should mix the base classifiers’ prediction probabilities.

« The resulting class-wise mixing formulation is:

Convert balck to logits Softmax
filw) =1og (1 - a) - o g(e)+ao h(z): )
t t t
Mixed Accurate Base Robust Base

Classifier Classifier (ABC) Classifier (RBC)



Intuition for mixing the probabilities

o The robust classifier h(-) is typically smooth or Lipschitz, and we want goyy(-) to inherent these
properties.

o The accurate classifier g(-) is in general non-smooth and non-robust.

o If g(-) € [0, 1] (probabilities), then the ''level of incorrectness' can be bounded. It is then possible
for the smoothness of h(-) to overshadow the turbulence of g(-), ultimately making gayy(+) robust.

-- WIill present a Lemma to formalize this.

If g(-) € R (logits), then it can be arbitrarily unsmooth. h(-) may not be possible to correct g(-).
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Certifiably robust with a margin  (Theoretically guaranteed robustness)

To facilitate the proof for certified robust radii, we first introduce the notion ''robust with a margin''.

Definition
Consider an arbitrary input x € R? and let y = argmax; h;(x), p € [0, 1], and r > 0.

Then, h(-) is said to be certifiably robust at x with margin p and radius r
if hy(x+6) > hi(x+ &) + p for all i # y and all § € R? such that ||6]|, < r.

Lemma

Let x € RY and r > 0.
If it holds that « € [$,1] and h(-) is certifiably robust at x with margin =% and radius r,
then the smoothed classifier goyy(+) is robust in the sense that arg max; goxy (x + ) = arg max; hi(x) for

all 6 € R? such that |||/, < r.

o Intuition: if h(-) is robust and confident, then it can override whatever g(-) predicts.
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Certifiably robust with a margin -- Proof

Lemma

(Restated.) If it holds that « € [%,1] and h(-) is certifiably robust at x with margin =2 and radius r,
then arg max; goyy ;(x + ¢) = argmax; hi(x) for all 6 € R? such that |||, < r.

Proof

Since a € [, 1], it holds that =% € [0, 1].
Suppose that h(-) is certifiably robust at x with margin 1?70‘ and radius r.
Let y = argmax, h;j(x). Consider an arbitrary i € [c] \ {y} and § € R? such that [|§]|, < r. It holds that

(1— ) (g, (x+8) — g(x+08)) + alhy(x+8) — hi(x+3))
(1—)(0 — 1) + a(hy(x+8) — hx+9))
(a@—1)+a(i=2) = 0.

exp (g, (x+9)) — exp (gonw,i(x + 9))
(Because gi(x+ ) € [0, 1])

v 1V

Thus, it holds that gexy ,(x+6) > gony (x+6) for all i # y, and thus
arg max; goyy ;(x +9) = y = argmax; hi(x). O
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Mechanism for Improved Accuracy Trade-Off

« Empirically robust models are more
confident when correct than when

incorrect, even on attacked data.

« Some examples (SOTA models on various datasets):

CIFAR-100

Definition 1. Consider a model A : RY — R¢, an arbitrary
input z € R, and its associated predicted label § € [c].
The confidence margin is defined as mp,(z) := o o hy(x) —
maX;—-+y 0 O h, (37)

CIFAR-10 (/5 CIFAR-10 (/, ImageNet
Clean
710 Correct
c 1.0 .760 o
£ ean
g 0.8 1 575 B Correct
.486 -
8 0.6 305 480 AutoAttacked
_§ 04- 220 179 Correct
< - 192 AutoAttacked
S 0.2 1 Incorrect
00l — sl wml o s = =i =g l I xooc Margin Gap
PS PS P 2 @ Lp o ¢ S (higher is better)
2 % NG 1% £ 053 05 4.9, 8 % Q%
9594 & SR, & CNON &Sy RN N 25,7 6%, % N 20, €4
%f L% Pk *?&%’}(j@% Vol o %}’kﬁg o "-’@/k}: & ‘9@}4/»0/ o “o0¢ Cs, 7@;‘%+@,
° )‘)Q S/ 0/6‘\/69/ /\5‘9 Q‘Q‘/G o/;é’ @0 ° 5% Sy 0/7\/6 N 0/\9\16 Sy ° 5 ’ 2 0/6‘ % Sy
2glo @09 %7 @09 oty 2y, 2, 500 /"09 o, 12 2, 5, 58,12, 5. 09@ s @09
Y > %/, S SN %
> Y



Mechanism for Improved Accuracy Trade-Off

- When o is slightly greater than 0O.5:
— ©On clean data, g(-) is better than /ACGD).
Since ACD is unconfident when making mistakes, it can be corrected by g();
— On attacked data, 2D is better than gC-D-
Since A(D is confident in correct predictions, it can overcome gc(-

Accurate Base Robust Base
Classifier (ABC) Classifier (RBC)

« When «a is slightly greater than 0.5:

— On clean data, g(-) is better than h(.).
Since h(:) is unconfident when making mistakes, it can be corrected by g(-);

— On attacked data, h(-) is better than g(.).
Since h(:) is confident in correct predictions, it can overcome g(-).



Adaptive Smoothing: Flexible Mixing Ratio

« Recall the mixed classifier formulation:

Convert balck to logits Softmax
fi(x) = log ((1 —a)-gog(x);+a-oo h(:r;)z)
t 1 1
Mixed Accurate Base Robust Base
Classifier Classifier (ABC)  Classifier (RBC)

« It makes sense to make the mixing ratio a a function of x.
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Adaptive Smoothing: Flexible Mixing Ratio

« It makes sense to make the mixing ratio « a function of x.

— Make a(x) small and prefer the ABC g(x) when x is natural (no attack).

— Make a(x) large and prefer the RBC h(x) when x is adversarial.

« Parameterizing a(x): an additional neural network module.

(Frozen) Standard Model

Upstream Layers

Input x —

A

4

Upstream Layers

| Global AvgPool +

Linear + BN

g(x)
Output
() L2 (3'4\)\Th“9(x)
h(x) Mixing
formulation

» Middle Layers » Downstream Layers
Mixing RNB —3 RNB RNB
Network — 7
Middle Layers Downstream Layers
(Frozen) Robust Model
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MixedNUTS: Nonlinear Mixed Classifier

« Recall: Mixed classifiers rely on the RBC h(-)’s benign confidence properties.
— More confident in correct examples than incorrect ones.

CIFAR-10 (£s) CIFAR-10 (£5) CIFAR-100 ImageNet Cloan
.710 Correct
- 1.0 .760 o
‘60 ean
s 0.8 L Incorrect
486 575
Y 0.6 305 480 AutoAttacked
< 176 Correct
:é 0.4 229 192 AutoAttacked
S 02 I Incorrect
0.0 - —m= = - - — N - - | oo Margin Gap.
0 0 O ¢ @ C\ (' \s\‘ igher Is better
£ ) +8 £% 5 S (! S % c
0 5 S AN wn W B, S, Al
Yo Ty S o, 208 % Po "% S 0" S 20" S P X Sy Yo e, S
N A °_%, 9 °_R % ° N Ve °_ Koy o 9y AR - 0/"2 L4
22, 0" &7 % PNQ NG N N @0 5™
2,0 s Szo 0, 055, %9, P00 2 0o /\—’09 <o, /\309 o4&, @09 S0 D5, 6o /\309
v ¥ /%, % SN ¥
=) )

« Confidence can be adjusted without changing predictions.
— (e.g., temperature scaling).

« Can we augment the benign properties to improve the mixed classifier?
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MixedNUTS: Nonlinear Mixed Classifier

« How to augment the benign properties?

« Apply a non-linear transformation M(:) to RBC h(:)’s logits before Softmax
and mixing.
— Notation: A (x) = M(h(x)).

— Temperature scaling is a special case where M(:) is linear.

« Apply temperature scaling to ABC g(-)’s logits before Softmax and mixing.

— Ablation study shows that zero temperature (one-hot probabilities) works the best.
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MixedNUTS: Nonlinear Mixed Classifier

 Goal: optimize M(-)’s clean accuracy for a given robust accuracy r.

M _
T P(x,v)~p| a1g Zmax (X)) =Y] ) Maximize mixed classifier clean accuracy

MeM, a€[l/2,1] - - mixe
s. t. P(X,Y)Np[al‘g max fM (X + 6% (X)) = Y] > 7 e, while maintaining robust accuracy
i

* Consider the approximate prOblem Minimize h™(-)’s confidence margin at

min Px~x,, [mpm(X) > =2 mispredicted clean data
MeM, a€ll/21] 3) while maintaining h™(-)’s margin at correctly
s. t. Pzox., [m};M (Z2) > 1?%] > f, predicted worst-case adversarial data

where X, is the distribution formed by clean examples incorrectly classified by h* (-), X, is the distribution formed
by attacked examples correctly classified by hM(-), X, Z are the random variables drawn from these distributions, and
B € [0, 1] controls the desired level of robust accuracy with respect to the robust accuracy of A(-).

— The approximate problem decouples the optimization from g(-).
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Quality of Approximation

« Original goal:
Pix.y)~ (X)) =Y 2
P8y P o largmax 1400 = Y] @

s. t. ]P(X,y)ND[argmaxfi]\J(X + 5*M (X)) e Y] Z’I“fM,

« Approximate problem:

min Pxox [mpm(X)>1=2
MGM’ a€[1/2’1] X X'Lc [ hM( ) —_ [0 ] (3)
s. t. Pzox,, [sz(Z) > 1?Ta:| > B,

 The objectives are equivalent, (3)’s
constraint is more conservative

Assumption 4.1. On unattacked clean data, if b (-) makes
a correct prediction, then g(-) is also correct.

Assumption 4.2. The transformation M (-) does not change
the predicted class due to, e.g., monotonicity. Namely, it
holds that arg max; M (h(z)); = arg max, h;(z) for all z.

Theorem 4.3. Suppose that Assumption 4.2 holds. Let r},
denote the robust accuracy of h(-). If B > rsm/r,, then a
solution to (3) is feasible for (2).

Theorem 4.4. Suppose that Assumption 4.1 holds. Further-
more, consider an input random variable X and suppose
that the margin of h™ (X) is independent of whether g(X)
is correct. Then, minimizing the objective of (3) is equiva-
lent to maximizing the objective of (2).
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Nonlinear Transformation Parameterization

« Step 1: Layer Norm (LN) « Step 2: Clamp
— Nonlinear transformations’ effect — We use a RelLU-like function to clamp the
depends on the logits range. logits smaller than a positive threshold

. toward zero.

— LN unifies the range. * Introduce the threshold parameter c.
— For each image x, we standardize
the logits h(x) to have zero mean

and variance one.

— Since correct predictions have greater
margins, clamping enlarges the margin
difference between correct and incorrect
examples.

— We select GELU based on ablation studies.
So far, K™ (x) = GELU(LN(h(x)) + ¢)
Berkeley
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Nonlinear Transformation Parameterization

« Step 3: Exponentiation

— Amplify large logits (common in
correct predictions) to further
enlarge the margin difference.

— Use absolute value to preserve logit
sign.

— Introduce the exponent parameter p.

Final formulation:

S

« Step 4: Temperature Scaling

Softmax “saturates” with large
logits.

Temperature scaling allows for
adjusting the level of saturation.

Introduce the scale parameter s.

pC1amP-¢(z) = Clamp (LN(h(z)) + c)

hMIc’(iﬂ) — e |hClamp,c($)|p . sgn (hClamp,c(w))
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Optimizing s,p,c,a

« The resulting problem is then

11—«

s,pr,rcl,iéleR Px~ae [mhmap’s’p*C(X) > T]

S. t. IPZNXCQ, I:m’;;map,s,p,c(z) 2 :lTTa:I Z /B
3207 pZO, 1/2§Oé§1.

B = 0.985 works well in practice.

Only three degrees of freedom.

— Because the robust accuracy
constraint is always active.

Algorithm: grid search over s,p,c
and calculate a via the constraint.

Approximation for efficiency:

— Use k() as a surrogate for hM(-) in
margin calculations, so that grid
search doesn’t need to include attack.
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Optimizing
S,P,C, &

Algorithm 1 Algorithm for optimizing s, p, ¢, and .

[

ol ol D)

10:

11:
12:
13:
14:
15:

16:

: Given an image set, save the predicted logits associated with

mispredicted clean images { A"~ (z) : z € X;.}.
Run MMAA on h™Y(-) and save the logits of correctly classi-
fied perturbed inputs {hLN () :x € /ica}.
Initialize candidate values s1,...,S;, P1,...,Pm,Cly...,Cn.
for s, fort=1,...,ldo
forp;forj=1,...,mdo
forcy fork =1,...,ndo
Obtain mapped logits { A 3j(z) : © € Aca }.
Calculate the margins from the mapped logits
{mpr, () z € Aca}.
Store the bottom 1 — S3-quantile of the margins as
qij_kﬁ (corresponds to fTO‘ in (6)).

Record the current objective 0"

ijk
Pyex,. [mhMgz(X) > qu—ﬁ]'
end for
end for
end for Ny
Find optimal indices (i*, j*, k*) = argmin, ; , oIk,
Recover optimal mixing weight o* := 1/ (1+q§*_jﬁ* B ):

return s* = s;x, p* == pj*, c* = cpx, . B@fk@ley
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Main Experiment Result

Robust Accuracy (%)

Mixed classifiers achieve state-of-the-art accuracy-robustness trade-off.

CIFAR-10
-
70 A
65 -
L 3
60 - Previous Robust Models
I ® Standard Model
| MixedNUTS (ours)
30 - AS (ours)
|
|
|
0 3 ®
T T T T T
90 92 94 96 98

Clean Accuracy (%)

Robust Accuracy (%)
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40 +
35 ~
Previous Robust Models
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30 1 MixedNUTS (ours)
I AS (ours)
|
I
0 ¥ { ]
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ImageNet

Previous Robust Models
® Standard Model
MixedNUTS (ours)
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Robust Accuracy (AutoAttack)

Main Experiment Result

« MixedNUTS’ nonlinear logit transformations improve the accuracy-
robustness trade-off.

A

RBC
93.27%
71.07%

CIFAR-10

MixedNUTS
®

(ours)
95.19%
Mixed
94.51%

69.71%
68.64%

ABC
98.50%
0.00%

Clean Accuracy

A

RBC
75.22%
42.67%

CIFAR-100

MixedNUTS
* (ours)
83.08%
® 41.80%

Mixed

78.93%

40.13%
ABC
91.38%
0.00%

Clean Accuracy

A

RBC
78.92%
59.56%

ImageNet

* MixedNUTS

(ours)
(o)

® 81.48%
Mixed

58.50%
80.82%
55.66%

ABC
86.18%

Uses 5000 validation images 0
as specified in RobustBench 0.00%

Clean Accuracy

Robust Base
Classifier (RBC)

B Accurate Base
Classifier (ABC)

® Mixed
(Bai et al, 2023b)

MixedNUTS
(ours)

A

Model Type
Clean Acc
Robust Acc
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Confidence Margin

Augmented Benign Margin Property

MixedNUTS’ nonlinear logit transformation augments the RBC’s benign
confidence margin properties.

CIFAR-100

CIFAR-10
1.0 1 986 1.0 1
0.8 1 0.8 1
0.6 1 0.6 1
0.4 1 0.4 A
0.2 A J 0.2 A
0.0 0.0
) REN() hMp

)

1]

) RIN(Y) RMEE(-

1.0 +
0.8 1
0.6 1
0.4 1
0.2 1

ImageNet

0.0

) RN hMp

Clean
Correct

Clean
Incorrect

AutoAttacked
Correct

AutoAttacked
Incorrect

Margin Gap
(higher is better)
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Future - Beyond Adversarial Robustness

« Beyond adversarial robustness:

— Generalized case: Model A specializes in Distribution A; Model B specializes in
Distribution B; Distributions A, B share the same classes.

« Beyond classification:

— Language models: output the probabilities of candidate next word tokens.

« Existing models use mixtures of experts (MoE) to save computation (not all weights are
activated).
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Thank you!

Adaptive Smoothing: https://arxiv.org/abs/2301.12554
MixedNUTS: https://arxiv.org/abs/2402.02263

Presenter: Yatong Bai yatong_bai@berkeley.edu
May 19, 2024
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