Guest Lecture: Mixing Neural Network Classifiers to Balance Accuracy and Adversarial Robustness

Presenter: Yatong Bai yatong_bai@berkeley.edu May 19, 2024

About Myself

- Rising 5th-year Ph.D. candidate at UC Berkeley advised by Professor Somayeh Sojoudi.
- Research focus:
 - Reconciling adversarial robustness and accuracy of classification models.
 - Efficient audio generation through consistency models.
- Teaching:
 - Convex optimization and approximation.

Overview of This Presentation

- Brief intro to adversarial robustness.
- Improving the accuracy-robustness trade-off.
 - Mixing classifiers to balance robustness and accuracy.
 - Adaptive Smoothing: adaptive mixing ratio.
 https://arxiv.org/abs/2301.12554
 - MixedNUTS: mix in a nonlinear fashion.
 https://arxiv.org/abs/2402.02263

Adversarial Robustness

- Neural networks are vulnerable
 - Small input perturbations elicit unexpected outputs.
- For classifiers: misclassifications.
- For control systems: dangerous actions

Adversarial example generation (An optimization formulation)

- We need a budget for the attack, since the adversarial perturbations should be inperceptible by human.
 - -- A common uncertainty set is an ℓ_{∞} -norm-bounded additive set with radius ϵ :
 - -- I. e., a cube around each clean input.

• The adversarial examples are usually generated via the following optimization problem:

$$\max_{\delta:x+\delta\in\mathcal{X}} \ell \atop \text{Loss fn} \left(\underbrace{g(x+\delta)}_{\text{NN output for attacked input}}, \underbrace{Y}_{\text{Target output}} \right)$$

where g represents the NN as a function.

Defending attacks -- Adversarial training (Robust Optimization)

- One defense method: Adversarial training (train with adversarial data) [Madry et al., 2018, Goodfellow et al., 2015].
 - -- Train robust models via robust optimization. For an uncertainty set \mathcal{X} , solve the optimization problem

• TRADES, Randomized Smoothing.

Accuracy-Robustness Trade-Off

- Robust models often sacrifice clean accuracy.
- Theoretically, robust generalization needs much more training data.
- Existing methods for alleviating the trade-off:
 - Additional real/synthetic training data;
 - Attack purification;
 - Alternative training loss functions.

Mixing Classifiers for Better Trade-Off

- What if we combine the wisdom of an **accurate model** and a **robust model**?
- Specifically, we "mix" their outputs, resulting in a mixed classifier.

$$f_i(x) \coloneqq (1 - \alpha) \cdot g_i(x) + \alpha \cdot h_i(x)$$

$$\uparrow \qquad \uparrow \qquad \uparrow$$
Mixed Accurate Base Robust Base
Classifier (ABC) Classifier (RBC)

- Should we mix the logits or probabilities?
 - Classifiers often use a "Softmax" operation to convert "logits" $(-\infty, +\infty)$ to prediction probabilities (0, 1).

Empirically comparing the design choices

• We compare the cases with various values of α via the clean accuracy versus attacked accuracy plot:

Figure 1: Adaptive PGD₁₀ accuracy versus clean accuracy for the three different choices of R(x) on CIFAR-10.

- Blue: smoothing with logits. Purple: smoothing with probabilities.
- Conclusion: smoothing should be done on probabilities.

Mixing Probabilities is Better

- Conclusion: we should mix the base classifiers' prediction probabilities.
- The resulting class-wise mixing formulation is:

Intuition for mixing the probabilities

- The robust classifier $h(\cdot)$ is typically smooth or Lipschitz, and we want $g_{CNN}^{\alpha}(\cdot)$ to inherent these properties.
- The accurate classifier $g(\cdot)$ is in general non-smooth and non-robust.
- If $g(\cdot) \in [0, 1]$ (probabilities), then the ''level of incorrectness'' can be bounded. It is then possible for the smoothness of $h(\cdot)$ to overshadow the turbulence of $g(\cdot)$, ultimately making $g_{CNN}^{\alpha}(\cdot)$ robust. -- Will present a Lemma to formalize this.
- If $g(\cdot) \in \mathbb{R}$ (logits), then it can be arbitrarily unsmooth. $h(\cdot)$ may not be possible to correct $g(\cdot)$.

Certifiably robust with a margin (Theoretically guaranteed robustness)

To facilitate the proof for certified robust radii, we first introduce the notion "robust with a margin".

Definition

Consider an arbitrary input $x \in \mathbb{R}^d$ and let $y = \arg \max_i h_i(x), \mu \in [0, 1]$, and $r \ge 0$. Then, $h(\cdot)$ is said to be certifiably robust at x with margin μ and radius rif $h_y(x+\delta) \ge h_i(x+\delta) + \mu$ for all $i \ne y$ and all $\delta \in \mathbb{R}^d$ such that $\|\delta\|_p \le r$.

Lemma

Let $x \in \mathbb{R}^d$ and $r \ge 0$. If it holds that $\alpha \in [\frac{1}{2}, 1]$ and $h(\cdot)$ is certifiably robust at x with margin $\frac{1-\alpha}{\alpha}$ and radius r, then the smoothed classifier $g_{\text{CNN}}^{\alpha}(\cdot)$ is robust in the sense that $\arg \max_i g_{\text{CNN},i}^{\alpha}(x+\delta) = \arg \max_i h_i(x)$ for all $\delta \in \mathbb{R}^d$ such that $\|\delta\|_p \le r$.

• Intuition: if $h(\cdot)$ is robust and confident, then it can override whatever $g(\cdot)$ predicts.

Certifiably robust with a margin -- Proof

Lemma

(Restated.) If it holds that $\alpha \in [\frac{1}{2}, 1]$ and $h(\cdot)$ is certifiably robust at x with margin $\frac{1-\alpha}{\alpha}$ and radius r, then $\arg \max_i g_{\text{CNN},i}^{\alpha}(x+\delta) = \arg \max_i h_i(x)$ for all $\delta \in \mathbb{R}^d$ such that $\|\delta\|_p \leq r$.

Proof

Since $\alpha \in [\frac{1}{2}, 1]$, it holds that $\frac{1-\alpha}{\alpha} \in [0, 1]$. Suppose that $h(\cdot)$ is certifiably robust at x with margin $\frac{1-\alpha}{\alpha}$ and radius r. Let $y = \arg \max_i h_i(x)$. Consider an arbitrary $i \in [c] \setminus \{y\}$ and $\delta \in \mathbb{R}^d$ such that $\|\delta\|_p \leq r$. It holds that

$$\exp\left(g_{\text{CNN},y}^{\alpha}(x+\delta)\right) - \exp\left(g_{\text{CNN},i}^{\alpha}(x+\delta)\right) = (1-\alpha)(g_{y}(x+\delta) - g_{i}(x+\delta)) + \alpha(h_{y}(x+\delta) - h_{i}(x+\delta))$$

(Because $g_{i}(x+\delta) \in [0,1]$) $\geq (1-\alpha)(0-1) + \alpha(h_{y}(x+\delta) - h_{i}(x+\delta))$
 $\geq (\alpha-1) + \alpha\left(\frac{1-\alpha}{\alpha}\right) = 0.$

Thus, it holds that $g_{CNN,y}^{\alpha}(x+\delta) \ge g_{CNN,i}^{\alpha}(x+\delta)$ for all $i \ne y$, and thus $\arg \max_{i} g_{CNN,i}^{\alpha}(x+\delta) = y = \arg \max_{i} h_{i}(x)$.

Mechanism for Improved Accuracy Trade-Off

- Empirically robust models are more confident when correct than when incorrect, even on attacked data.
- Some examples (SOTA models on various datasets):

Definition 1. Consider a model $h : \mathbb{R}^d \to \mathbb{R}^c$, an arbitrary input $x \in \mathbb{R}^d$, and its associated predicted label $\hat{y} \in [c]$. The *confidence margin* is defined as $m_h(x) \coloneqq \sigma \circ h_{\hat{y}}(x) - \max_{i \neq \hat{y}} \sigma \circ h_i(x)$.

Mechanism for Improved Accuracy Trade-Off

- When α is slightly greater than 0.5:
 - On clean data, g(·) is better than h(·).
 Since h(·) is unconfident when making mistakes, it can be corrected by g(·);
 - On attacked data, $h(\cdot)$ is better than $g(\cdot)$. Since $h(\cdot)$ is confident in correct predictions, it can overcome $g(\cdot)$.

Adaptive Smoothing: Flexible Mixing Ratio

• Recall the mixed classifier formulation:

• It makes sense to make the mixing ratio α a function of x.

Adaptive Smoothing: Flexible Mixing Ratio

- It makes sense to make the mixing ratio α a function of x.
 - Make $\alpha(x)$ small and prefer the ABC g(x) when x is natural (no attack).
 - Make $\alpha(x)$ large and prefer the **RBC** h(x) when x is adversarial.
- Parameterizing $\alpha(x)$: an additional neural network module.

Berkeley

MixedNUTS: Nonlinear Mixed Classifier

- **Recall:** Mixed classifiers rely on the RBC $h(\cdot)$'s benign confidence properties.
 - More confident in correct examples than incorrect ones.

- Confidence can be adjusted without changing predictions.
 - (e.g., temperature scaling).
- Can we augment the benign properties to improve the mixed classifier?

MixedNUTS: Nonlinear Mixed Classifier

- How to augment the benign properties?
- Apply a non-linear transformation $M(\cdot)$ to RBC $h(\cdot)$'s logits before Softmax and mixing.
 - Notation: $h^M(x) = M(h(x))$.
 - Temperature scaling is a special case where $M(\cdot)$ is linear.
- Apply temperature scaling to ABC $g(\cdot)$'s logits before Softmax and mixing.
 - Ablation study shows that zero temperature (one-hot probabilities) works the best.

MixedNUTS: Nonlinear Mixed Classifier

• Goal: optimize $M(\cdot)$'s clean accuracy for a given robust accuracy r_f .

$$\max_{M \in \mathcal{M}, \ \alpha \in [1/2,1]} \mathbb{P}_{(X,Y) \sim \mathcal{D}} \left[\arg \max_{i} f_{i}^{M}(X) = Y \right]$$
(2)
s. t. $\mathbb{P}_{(X,Y) \sim \mathcal{D}} \left[\arg \max_{i} f_{i}^{M}(X + \delta_{f^{M}}^{\star}(X)) = Y \right] \geq r_{f^{M}},$

• Consider the approximate problem

$$\min_{\substack{M \in \mathcal{M}, \ \alpha \in [1/2,1]}} \mathbb{P}_{X \sim \mathcal{X}_{ic}} \left[m_{h^M}(X) \ge \frac{1-\alpha}{\alpha} \right] \\
\text{s.t.} \quad \mathbb{P}_{Z \sim \mathcal{X}_{ca}} \left[\underline{m}_{h^M}^{\star}(Z) \ge \frac{1-\alpha}{\alpha} \right] \ge \beta,$$
(3)

Maximize mixed classifier clean accuracy while maintaining robust accuracy

Minimize $h^{M}(\cdot)$'s confidence margin at mispredicted clean data while maintaining $h^{M}(\cdot)$'s margin at correctly predicted worst-case adversarial data

where \mathcal{X}_{ic} is the distribution formed by clean examples incorrectly classified by $h^{M}(\cdot)$, \mathcal{X}_{ca} is the distribution formed by attacked examples correctly classified by $h^{M}(\cdot)$, X, Z are the random variables drawn from these distributions, and $\beta \in [0, 1]$ controls the desired level of robust accuracy with respect to the robust accuracy of $h(\cdot)$.

- The approximate problem decouples the optimization from $g(\cdot)$.

Quality of Approximation

• Original goal:

 $\max_{M \in \mathcal{M}, \ \alpha \in [1/2,1]} \mathbb{P}_{(X,Y) \sim \mathcal{D}} \big[\arg \max_{i} f_{i}^{M}(X) = Y \big]$ (2) s.t. $\mathbb{P}_{(X,Y) \sim \mathcal{D}} \big[\arg \max_{i} f_{i}^{M}(X + \delta_{f^{M}}^{\star}(X)) = Y \big] \ge r_{f^{M}},$

• Approximate problem:

 $\min_{\substack{M \in \mathcal{M}, \ \alpha \in [1/2,1]}} \mathbb{P}_{X \sim \mathcal{X}_{ic}} \left[m_{h^M}(X) \ge \frac{1-\alpha}{\alpha} \right] \\
\text{s.t.} \quad \mathbb{P}_{Z \sim \mathcal{X}_{ca}} \left[\underline{m}_{h^M}^{\star}(Z) \ge \frac{1-\alpha}{\alpha} \right] \ge \beta,$ (3)

• The objectives are equivalent, (3)'s constraint is more conservative

Assumption 4.1. On unattacked clean data, if $h^M(\cdot)$ makes a correct prediction, then $g(\cdot)$ is also correct.

Assumption 4.2. The transformation $M(\cdot)$ does not change the predicted class due to, *e.g.*, monotonicity. Namely, it holds that $\arg \max_i M(h(x))_i = \arg \max_i h_i(x)$ for all x.

Theorem 4.3. Suppose that Assumption 4.2 holds. Let r_h denote the robust accuracy of $h(\cdot)$. If $\beta \geq r_{fM}/r_h$, then a solution to (3) is feasible for (2).

Theorem 4.4. Suppose that Assumption 4.1 holds. Furthermore, consider an input random variable X and suppose that the margin of $h^M(X)$ is independent of whether g(X) is correct. Then, minimizing the objective of (3) is equivalent to maximizing the objective of (2).

Nonlinear Transformation Parameterization

- Step 1: Layer Norm (LN)
 - Nonlinear transformations' effect depends on the logits range.
 - LN unifies the range.
 - For each image x, we standardize the logits h(x) to have zero mean and variance one.

- Step 2: Clamp
 - We use a ReLU-like function to clamp the logits smaller than a positive threshold toward zero.
 - Introduce the threshold parameter *c*.
 - Since correct predictions have greater margins, clamping enlarges the margin difference between correct and incorrect examples.
 - We select GELU based on ablation studies.

So far, $h^M(x) = \text{GELU}(\text{LN}(h(x)) + c)$

Nonlinear Transformation Parameterization

- Step 3: Exponentiation
 - Amplify large logits (common in correct predictions) to further enlarge the margin difference.
 - Use absolute value to preserve logit sign.
 - Introduce the exponent parameter *p*.

- Step 4: Temperature Scaling
 - Softmax "saturates" with large logits.
 - Temperature scaling allows for adjusting the level of saturation.
 - Introduce the scale parameter *s*.

Final formulation:
$$\begin{aligned} h^{\operatorname{Clamp},c}(x) &= \operatorname{Clamp}\bigl(\operatorname{LN}(h(x)) + c\bigr) \\ h^{M_{p}^{s}}(x) &= s \cdot \left|h^{\operatorname{Clamp},c}(x)\right|^{p} \cdot \operatorname{sgn}\left(h^{\operatorname{Clamp},c}(x)\right) \end{aligned}$$

Optimizing *s*, *p*, *c*, *α*

- The resulting problem is then
 - $\min_{\substack{s,p,c,\alpha \in \mathbb{R} \\ \text{s.t.}}} \mathbb{P}_{X \sim \mathcal{X}_{ic}} \left[m_{h^{\max p,s,p,c}}(X) \ge \frac{1-\alpha}{\alpha} \right]$ s.t. $\mathbb{P}_{Z \sim \mathcal{X}_{ca}} \left[\underline{m}_{h^{\max p,s,p,c}}^{\star}(Z) \ge \frac{1-\alpha}{\alpha} \right] \ge \beta$ $s \ge 0, \quad p \ge 0, \quad 1/2 \le \alpha \le 1.$
 - $\beta = 0.985$ works well in practice.

- Only three degrees of freedom.
 - Because the robust accuracy constraint is always active.
- Algorithm: grid search over s, p, c and calculate α via the constraint.
- Approximation for efficiency:
 - Use $h(\cdot)$ as a surrogate for $h^{M}(\cdot)$ in margin calculations, so that grid search doesn't need to include attack.

Optimizing s, p, c, α

Algorithm 1 Algorithm for optimizing s, p, c, and α .

1: Given an image set, save the predicted logits associated with mispredicted clean images $\{h^{\text{LN}}(x) : x \in \tilde{\mathcal{X}}_{ic}\}$. 2: Run MMAA on $h^{LN}(\cdot)$ and save the logits of correctly classified perturbed inputs $\{h^{\text{LN}}(x) : x \in \tilde{\mathcal{A}}_{ca}\}.$ 3: Initialize candidate values $s_1, \ldots, s_l, p_1, \ldots, p_m, c_1, \ldots, c_n$. 4: for s_i for i = 1, ..., l do 5: for p_j for $j = 1, \ldots, m$ do for c_k for $k = 1, \ldots, n$ do 6: Obtain mapped logits $\{h^M_{\tilde{g}_k^i}(x) : x \in \tilde{\mathcal{A}}_{ca}\}.$ 7: 8: Calculate the margins from the mapped logits $\{m_{h^{M_{\delta i}}}(x): x \in \mathcal{A}_{ca}\}.$ 9: Store the bottom $1 - \beta$ -quantile of the margins as $q_{1-\beta}^{ijk}$ (corresponds to $\frac{1-\alpha}{\alpha}$ in (6)). Record the current objective o^{ijk} 10: \leftarrow $\mathbb{P}_{X \in \tilde{\mathcal{X}}_{ic}} \left[m_{h^{M_{\tilde{R}}}}(X) \ge q_{1-\beta}^{ijk} \right].$ 11: end for 12: end for 13: **end for** 14: Find optimal indices $(i^*, j^*, k^*) = \arg \min_{i, j, k} o^{ijk}$. 15: Recover optimal mixing weight $\alpha^* \coloneqq 1/(1+q_{1-\beta}^{i^*j^*k^*})$. 16: return $s^* \coloneqq s_{i^*}, p^* \coloneqq p_{i^*}, c^* \coloneqq c_{k^*}, \alpha^*$.

Main Experiment Result

• Mixed classifiers achieve state-of-the-art accuracy-robustness trade-off.

Main Experiment Result

• MixedNUTS' nonlinear logit transformations improve the accuracyrobustness trade-off.

Augmented Benign Margin Property

• MixedNUTS' nonlinear logit transformation augments the RBC's benign confidence margin properties.

Future - Beyond Adversarial Robustness

- Beyond adversarial robustness:
 - Generalized case: Model A specializes in Distribution *A*; Model B specializes in Distribution *B*; Distributions *A*, *B* share the same classes.
- Beyond classification:
 - Language models: output the probabilities of candidate next word tokens.
 - Existing models use mixtures of experts (MoE) to save computation (not all weights are activated).

Thank you!

Adaptive Smoothing: <u>https://arxiv.org/abs/2301.12554</u> MixedNUTS: <u>https://arxiv.org/abs/2402.02263</u>

Presenter: Yatong Bai yatong_bai@berkeley.edu May 19, 2024

