Guest Lecture: Mixing Neural Network Classifiers to Balance Accuracy and Adversarial Robustness

Presenter: Yatong Bai yatong_bai@berkeley.edu May 19, 2024

About Myself

- Rising 5th-year Ph.D. candidate at UC Berkeley advised by Professor Somayeh Sojoudi.
- Research focus:
	- Reconciling adversarial robustness and accuracy of classification models.
	- Efficient audio generation through consistency models.
- Teaching:
	- Convex optimization and approximation.

Overview of This Presentation

- Brief intro to adversarial robustness.
- Improving the accuracy-robustness trade-off.
	- Mixing classifiers to balance robustness and accuracy.
	- Adaptive Smoothing: adaptive mixing ratio. <https://arxiv.org/abs/2301.12554>
	- MixedNUTS: mix in a nonlinear fashion. <https://arxiv.org/abs/2402.02263>

Adversarial Robustness

- Neural networks are vulnerable
	- Small input perturbations elicit unexpected outputs.
- For classifiers: misclassifications.
- For control systems: dangerous actions

Adversarial example generation **(An optimization formulation)**

- We need a budget for the attack, since the adversarial perturbations should be inperceptible by human.
	- $-$ A common uncertainty set is an ℓ_{∞} -norm-bounded additive set with radius ϵ :
	- -- I. e., a cube around each clean input.

• The adversarial examples are usually generated via the following optimization problem:

 $\sum_{i=1}^{n}$

$$
\max_{\delta: x+\delta \in \mathcal{X}} \int_{\text{Loss fin}} \left(\underbrace{g(x+\delta)}_{\text{NN output for attacked input}} \right), \underbrace{Y}_{\text{Target output}}
$$

where \boldsymbol{g} represents the NN as a function.

Defending attacks -- Adversarial training **(Robust Optimization)**

- One defense method: Adversarial training (train with adversarial data) [Madry et al., 2018, Goodfellow] et al., 2015] .
	- \blacksquare Train robust models via robust optimization. For an uncertainty set X, solve the optimization problem

• TRADES, Randomized Smoothing.

Accuracy-Robustness Trade-Off

- Robust models often sacrifice clean accuracy.
- Theoretically, robust generalization needs much more training data.
- Existing methods for alleviating the trade-off:
	- Additional real/synthetic training data;
	- Attack purification;
	- Alternative training loss functions.

Mixing Classifiers for Better Trade-Off

- What if we combine the wisdom of an **accurate model** and a **robust model**?
- Specifically, we "mix" their outputs, resulting in a **mixed classifier**.

$$
f_i(x) := (1 - \alpha) \cdot g_i(x) + \alpha \cdot h_i(x)
$$
\nMixed

\nAccurate Base Robust Base
\nClassifier (ABC) Classifier (RBC)

- Should we mix the logits or probabilities?
	- Classifiers often use a "Softmax" operation to convert "logits" (−∞, +∞) to prediction probabilities (0, 1).

Empirically comparing the design choices

 \bullet We compare the cases with various values of α via the clean accuracy versus attacked accuracy plot:

Figure 1: Adaptive PGD_{10} accuracy versus clean accuracy for the three different choices of $R(x)$ on CIFAR-10.

- \bullet Blue: smoothing with logits. Purple: smoothing with probabilities.
- Conclusion: smoothing should be done on probabilities.

Mixing Probabilities is Better

- Conclusion: we should mix the base classifiers' **prediction probabilities**.
- The resulting class-wise mixing formulation is:

Intuition for mixing the probabilities

- The robust classifier $h(\cdot)$ is typically smooth or Lipschitz, and we want $g_{\text{CNN}}^{\alpha}(\cdot)$ to inherent these properties.
- The accurate classifier $g(\cdot)$ is in general non-smooth and non-robust.
- If $g(\cdot) \in [0,1]$ (probabilities), then the "level of incorrectness" can be bounded. It is then possible for the smoothness of $h(\cdot)$ to overshadow the turbulence of $g(\cdot)$, ultimately making $g_{CNN}^{\alpha}(\cdot)$ robust. -- Will present a Lemma to formalize this.
- If $g(\cdot) \in \mathbb{R}$ (logits), then it can be arbitrarily unsmooth. $h(\cdot)$ may not be possible to correct $g(\cdot)$.

Certifiably robust with a margin **(Theoretically guaranteed robustness)**

To facilitate the proof for certifed robust radii, we frst introduce the notion ''robust with a margin''.

Definition

Consider an arbitrary input $x \in \mathbb{R}^d$ and let $y = \arg \max_i h_i(x)$, $\mu \in [0, 1]$, and $r \ge 0$. Then, $h(\cdot)$ is said to be certifiably robust at *x* with margin μ and radius *r* if $h_y(x+\delta) \geq h_i(x+\delta) + \mu$ for all $i \neq y$ and all $\delta \in \mathbb{R}^d$ such that $\|\delta\|_p \leq r$.

Lemma

Let $x \in \mathbb{R}^d$ and $r > 0$. If it holds that $\alpha \in [\frac{1}{2}, 1]$ and $h(\cdot)$ is certifiably robust at *x* with margin $\frac{1-\alpha}{\alpha}$ and radius *r*, then the smoothed classifier $g_{CNN}^{\alpha}(\cdot)$ is robust in the sense that $\arg \max_i g_{CNN,i}^{\alpha}(x + \delta) = \arg \max_i h_i(x)$ for all $\delta \in \mathbb{R}^d$ such that $\|\delta\|_p \leq r$.

• Intuition: if $h(\cdot)$ is robust and confident, then it can override whatever $g(\cdot)$ predicts.

Certifiably robust with a margin -- Proof

Lemma

(Restated.) If it holds that $\alpha \in [\frac{1}{2}, 1]$ and $h(\cdot)$ is certifiably robust at *x* with margin $\frac{1-\alpha}{\alpha}$ and radius *r*, then $\arg \max_i g_{\text{CNN},i}^{\alpha}(x + \delta) = \arg \max_i h_i(x)$ for all $\delta \in \mathbb{R}^d$ such that $\|\delta\|_p \le r$.

Proof

Since $\alpha \in [\frac{1}{2}, 1]$, it holds that $\frac{1-\alpha}{\alpha} \in [0, 1]$. Suppose that $h(\cdot)$ is certifiably robust at *x* with margin $\frac{1-\alpha}{\alpha}$ and radius *r*. Let $y = \arg \max_i h_i(x)$. Consider an arbitrary $i \in [c] \setminus \{y\}$ and $\delta \in \mathbb{R}^d$ such that $\|\delta\|_p \le r$. It holds that

$$
\exp\left(g_{\text{CNN},y}^{\alpha}(x+\delta)\right) - \exp\left(g_{\text{CNN},i}^{\alpha}(x+\delta)\right) = (1-\alpha)\left(g_{y}(x+\delta) - g_{i}(x+\delta)\right) + \alpha\left(h_{y}(x+\delta) - h_{i}(x+\delta)\right)
$$
\n
$$
\text{(Because } g_{i}(x+\delta) \in [0,1]) \qquad \geq (1-\alpha)(0-1) + \alpha\left(h_{y}(x+\delta) - h_{i}(x+\delta)\right)
$$
\n
$$
\geq (\alpha-1) + \alpha\left(\frac{1-\alpha}{\alpha}\right) = 0.
$$

Thus, it holds that $g_{\text{CNN},y}^{\alpha}(x+\delta) \geq g_{\text{CNN},i}^{\alpha}(x+\delta)$ for all $i \neq y$, and thus $\arg \max_i g_{\text{CNN},i}^{\alpha}(x+\delta) = y = \arg \max_i h_i(x).$

Mechanism for Improved Accuracy Trade-Off

- Empirically robust models are more confident when correct than when incorrect, even on attacked data.
- Some examples (SOTA models on various datasets):

Definition 1. Consider a model $h : \mathbb{R}^d \to \mathbb{R}^c$, an arbitrary input $x \in \mathbb{R}^d$, and its associated predicted label $\hat{y} \in [c]$. The confidence margin is defined as $m_h(x) \coloneqq \sigma \circ h_{\widehat{v}}(x)$ – $\max_{i \neq \widehat{y}} \sigma \circ h_i(x)$.

Mechanism for Improved Accuracy Trade-Off

- When α is slightly greater than 0.5:
	- On clean data, $g(\cdot)$ is better than $h(\cdot)$. Since $h(\cdot)$ is unconfident when making mistakes, it can be corrected by $g(\cdot)$;
	- On attacked data, $h(\cdot)$ is better than $g(\cdot)$. Since $h(\cdot)$ is confident in correct predictions, it can overcome $g(\cdot)$.

Adaptive Smoothing: Flexible Mixing Ratio

• Recall the mixed classifier formulation:

• It makes sense to **make the mixing ratio** α a function of x .

Adaptive Smoothing: Flexible Mixing Ratio

- It makes sense to make the mixing ratio α a function of x .
	- Make $\alpha(x)$ small and prefer the ABC $g(x)$ when x is natural (no attack).
	- Make $\alpha(x)$ **large** and prefer the **RBC** $h(x)$ when x is **adversarial**.
- Parameterizing $\alpha(x)$: an additional neural network module.

MixedNUTS: Nonlinear Mixed Classifier

- **Recall:** Mixed classifiers rely on the RBC $h(\cdot)$'s benign confidence properties.
	- More confident in correct examples than incorrect ones.

- Confidence can be adjusted without changing predictions.
	- (e.g., temperature scaling).
- **Can we augment the benign properties to improve the mixed classifier?**

MixedNUTS: Nonlinear Mixed Classifier

- **How to augment the benign properties?**
- Apply a non-linear transformation $M(\cdot)$ to RBC $h(\cdot)$'s logits before Softmax and mixing.
	- Notation: $h^M(x) = M(h(x))$.
	- Temperature scaling is a special case where $M(\cdot)$ is linear.
- Apply temperature scaling to ABC $g(\cdot)$'s logits before Softmax and mixing.
	- Ablation study shows that zero temperature (one-hot probabilities) works the best.

MixedNUTS: Nonlinear Mixed Classifier

Goal: optimize $M(\cdot)$'s clean accuracy for a given robust accuracy r_f .

$$
\max_{M \in \mathcal{M}, \alpha \in [1/2, 1]} \mathbb{P}_{(X, Y) \sim \mathcal{D}} \left[\arg \max_{i} f_i^M(X) = Y \right] \qquad (2)
$$

s.t.
$$
\mathbb{P}_{(X, Y) \sim \mathcal{D}} \left[\arg \max_{i} f_i^M(X + \delta_{f^M}^*(X)) = Y \right] \ge r_{f^M},
$$

• Consider the approximate problem

$$
\min_{M \in \mathcal{M}, \ \alpha \in [1/2, 1]} \mathbb{P}_{X \sim \mathcal{X}_{ic}} \left[m_{h^M}(X) \ge \frac{1 - \alpha}{\alpha} \right]
$$

s.t.
$$
\mathbb{P}_{Z \sim \mathcal{X}_{ca}} \left[\underline{m}_{h^M}^{\star}(Z) \ge \frac{1 - \alpha}{\alpha} \right] \ge \beta,
$$
 (3)

Maximize mixed classifier clean accuracy while maintaining robust accuracy

Minimize $h^M(\cdot)$'s confidence margin at mispredicted clean data while maintaining $h^M(\cdot)$'s margin at correctly predicted worst-case adversarial data

where \mathcal{X}_{ic} is the distribution formed by clean examples incorrectly classified by $h^M(\cdot)$, \mathcal{X}_{ca} is the distribution formed by attacked examples correctly classified by $h^M(\cdot)$, X, Z are the random variables drawn from these distributions, and $\beta \in [0,1]$ controls the desired level of robust accuracy with respect to the robust accuracy of $h(\cdot)$.

– The approximate problem decouples the optimization from $g(\cdot)$.

Quality of Approximation

• Original goal:

 $\max_{M \in \mathcal{M}, \alpha \in [1/2,1]} \mathbb{P}_{(X,Y) \sim \mathcal{D}} \big[\arg \max_i f_i^M(X) = Y \big]$ (2) s.t. $\mathbb{P}_{(X,Y)\sim\mathcal{D}}\left[\arg\max_{i} f_i^M(X+\delta_{f^M}^*(X))=Y\right]\geq r_{f^M},$

• Approximate problem:

 $\min_{M \in \mathcal{M}, \ \alpha \in [1/2,1]} \mathbb{P}_{X \sim \mathcal{X}_{ic}} \left[m_{h^M}(X) \ge \frac{1-\alpha}{\alpha} \right]$ s.t. $\mathbb{P}_{Z \sim \mathcal{X}_{ca}} \left[\underline{m}_{h^M}^{\star}(Z) \ge \frac{1-\alpha}{\alpha} \right] \ge \beta,$ (3)

• The objectives are equivalent, (3)'s constraint is more conservative

Assumption 4.1. On unattacked clean data, if $h^M(\cdot)$ makes a correct prediction, then $q(\cdot)$ is also correct.

Assumption 4.2. The transformation $M(\cdot)$ does not change the predicted class due to, e.g., monotonicity. Namely, it holds that $\arg \max_i M(h(x))_i = \arg \max_i h_i(x)$ for all x.

Theorem 4.3. Suppose that Assumption 4.2 holds. Let r_h denote the robust accuracy of $h(\cdot)$. If $\beta \geq r_f M/r_h$, then a solution to (3) is feasible for (2) .

Theorem 4.4. Suppose that Assumption 4.1 holds. Furthermore, consider an input random variable X and suppose that the margin of $h^M(X)$ is independent of whether $g(X)$ is correct. Then, minimizing the objective of (3) is equivalent to maximizing the objective of (2) .

Nonlinear Transformation Parameterization

- **Step 1: Layer Norm (LN)**
	- Nonlinear transformations' effect depends on the logits range.
	- LN unifies the range.
	- For each image x , we standardize the logits $h(x)$ to have zero mean and variance one.
- **Step 2: Clamp**
	- We use a ReLU-like function to clamp the logits smaller than a positive threshold toward zero.
		- Introduce the threshold parameter c .
	- Since correct predictions have greater margins, clamping enlarges the margin difference between correct and incorrect examples.
	- We select GELU based on ablation studies.

So far, $h^M(x) = \text{GELU}(\text{LN}(h(x)) + c)$

Nonlinear Transformation Parameterization

- **Step 3: Exponentiation**
	- Amplify large logits (common in correct predictions) to further enlarge the margin difference.
	- Use absolute value to preserve logit sign.
	- Introduce the exponent parameter p .
- **Step 4: Temperature Scaling**
	- Softmax "saturates" with large logits.
	- Temperature scaling allows for adjusting the level of saturation.
	- Introduce the scale parameter s .

$$
\text{Final formulation:} \quad \begin{array}{l} h^{\text{Clamp},c}(x) = \text{Clamp}\big(\text{LN}(h(x)) + c\big) \\ h^M{}^s_{\ell}(x) = s \cdot \big\vert h^{\text{Clamp},c}(x) \big\vert^p \cdot \text{sgn}\left(h^{\text{Clamp},c}(x)\right) \end{array}
$$

Optimizing s, p, c, α

- The resulting problem is then
	- $\min_{s,p,c,\alpha \in \mathbb{R}} \mathbb{P}_{X \sim \mathcal{X}_{ic}} \left[m_{h^{\text{map},s,p,c}}(X) \geq \frac{1-\alpha}{\alpha} \right]$ s.t. $\mathbb{P}_{Z \sim \mathcal{X}_{ca}} \left[\underline{m}_{h^{\text{map},s,p,c}}^{\star}(Z) \geq \frac{1-\alpha}{\alpha} \right] \geq \beta$ $s \geq 0$, $p \geq 0$, $1/2 \leq \alpha \leq 1$.
		- β = 0.985 works well in practice.
- Only three degrees of freedom.
	- Because the robust accuracy constraint is always active.
- Algorithm: grid search over s, p, c and calculate α via the constraint.
- Approximation for efficiency:
	- Use $h(\cdot)$ as a surrogate for $h^M(\cdot)$ in margin calculations, so that grid search doesn't need to include attack.

Optimizing S, p, C, α

Algorithm 1 Algorithm for optimizing s, p, c, and α .

1: Given an image set, save the predicted logits associated with mispredicted clean images $\{h^{\text{LN}}(x) : x \in \tilde{\mathcal{X}}_{ic}\}.$ 2: Run MMAA on $h^{LN}(\cdot)$ and save the logits of correctly classified perturbed inputs $\{h^{\text{LN}}(x) : x \in \tilde{\mathcal{A}}_{ca}\}.$ 3: Initialize candidate values $s_1, \ldots, s_l, p_1, \ldots, p_m, c_1, \ldots, c_n$. 4: for s_i for $i = 1, \ldots, l$ do $5:$ for p_j for $j = 1, \ldots, m$ do for c_k for $k = 1, \ldots, n$ do 6: Obtain mapped logits $\{h^M_{\ell^i_k}(x) : x \in \tilde{\mathcal{A}}_{ca}\}.$ $7:$ $8:$ Calculate the margins from the mapped logits $\{m_{h^{M_{s_i}}}(x): x \in \mathcal{A}_{ca}\}.$ $9:$ Store the bottom $1 - \beta$ -quantile of the margins as $q_{1-\beta}^{ijk}$ (corresponds to $\frac{1-\alpha}{\alpha}$ in (6)). Record the current objective o^{ijk} $10:$ \leftarrow $\mathbb{P}_{X \in \tilde{\mathcal{X}}_{i,c}} \left[m_{h^{M_{\tilde{e}i}}}(X) \geq q_{1-\beta}^{ijk} \right].$ $11:$ end for $12:$ end for $13:$ end for 14: Find optimal indices $(i^*, j^*, k^*) = \arg \min_{i, j, k} o^{ijk}$. 15: Recover optimal mixing weight $\alpha^* := 1/(1 + q_1^{i^* j^* k^*})$. 16: **return** $s^* := s_{i^*}, p^* := p_{i^*}, c^* := c_{k^*}, \alpha^*$.

Main Experiment Result

• Mixed classifiers achieve state-of-the-art accuracy-robustness trade-off.

Main Experiment Result

• MixedNUTS' nonlinear logit transformations improve the accuracyrobustness trade-off.

Augmented Benign Margin Property

• MixedNUTS' nonlinear logit transformation augments the RBC's benign confidence margin properties.

Future – Beyond Adversarial Robustness

- Beyond adversarial robustness:
	- Generalized case: Model A specializes in Distribution A ; Model B specializes in Distribution B ; Distributions A , B share the same classes.
- Beyond classification:
	- Language models: output the probabilities of candidate next word tokens.
		- Existing models use mixtures of experts (MoE) to save computation (not all weights are activated).

Thank you!

Adaptive Smoothing:<https://arxiv.org/abs/2301.12554> MixedNUTS <https://arxiv.org/abs/2402.02263>

Presenter: Yatong Bai yatong_bai@berkeley.edu May 19, 2024

