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About Myself

• Rising 5th-year Ph.D. candidate at UC Berkeley
advised by Professor Somayeh Sojoudi.

• Research focus:
– Reconciling adversarial robustness and accuracy

of classification models.

– Efficient audio generation through consistency
models.

• Teaching:
– Convex optimization and approximation.



Overview of This Presentation

• Brief intro to adversarial robustness.

• Improving the accuracy-robustness trade-off.

– Mixing classifiers to balance robustness and accuracy.

– Adaptive Smoothing: adaptive mixing ratio.
https://arxiv.org/abs/2301.12554

– MixedNUTS: mix in a nonlinear fashion.
https://arxiv.org/abs/2402.02263

https://arxiv.org/abs/2301.12554
https://arxiv.org/abs/2402.02263


Adversarial Robustness
• Neural networks are vulnerable

– Small input perturbations elicit 
unexpected outputs.

• For classifiers: misclassifications.

• For control systems: dangerous 
actions

PANDA perturbation GIBBON
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Adversarial example generation

• We need a budget for the attack, since the adversarial
perturbations should be inperceptible by human.

-- A common uncertainty set is an ℓ∞-norm-bounded
additive set with radius ":

-- I. e., a cube around each clean input.

Clean input (low loss)

ℓ! perturbation set (")

#

#
Adversarial input

(high loss)

$
Δ

$ + Δ

• The adversarial examples are usually generated via the following optimization problem:

max
δ:x+δ∈X

ℓ
↑

Loss fn

!
g(x + δ)" #$ %

NN output for attacked input

, Y"#$%
Target output

&
, where g represents the NN as a function.

(An optimization formulation)
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Defending attacks -- Adversarial training

• One defense method: Adversarial training (train with adversarial data) [Madry et al., 2018, Goodfellow
et al., 2015] .
-- Train robust models via robust optimization. For an uncertainty set X , solve the optimization

problem
min

θ"#$%
Optimize NN weights

!
max

δ:x+δ∈X" #$ %
Generate attack

ℓ
'
gθ(x + δ),Y

(&
+ rθ

↑
Regularization

(1)

Figure 1: Decision boundaries of standard training and adversarial training [Madry et al., 2018].
Alternative methods:
• TRADES, Randomized Smoothing.

(Robust Optimization)



Accuracy-Robustness Trade-Off
• Robust models often sacrifice clean 

accuracy.

• Theoretically, robust generalization 
needs much more training data. 

• Existing methods for alleviating the 
trade-off:
– Additional real/synthetic training data;
– Attack purification;
– Alternative training loss functions.

Towards Both Accurate and Robust 
Neural Networks Without Extra Data

Once-for-All Adversarial Training: In-Situ Tradeoff 
between Robustness and Accuracy for Free
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Improving the Accuracy-Robustness Trade-
Off of Classifiers via Adaptive Smoothing

Certified Adversarial Robustness 
via Randomized Smoothing



Mixing Classifiers for Better Trade-Off

• What if we combine the wisdom of an accurate model and a robust model?

• Specifically, we “mix” their outputs, resulting in a mixed classifier.

• Should we mix the logits or probabilities?
– Classifiers often use a “Softmax” operation to convert “logits” (−∞,+∞) to 

prediction probabilities (0, 1).

𝑓!(𝑥) ≔ (1	 − 𝛼) ⋅ 𝑔!(𝑥) + 𝛼 ⋅ ℎ!(𝑥)

Robust Base 
Classifier (RBC)

Accurate Base 
Classifier (ABC)

Mixed 
Classifier
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Empirically comparing the design choices

• We compare the cases with various values of α via the clean accuracy versus attacked accuracy plot:
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ResNet18+AT, ℓ∞ ConvNeXT+TRADE, ℓ∞ ResNet18+AT, ℓ2
Figure 1: Adaptive PGD10 accuracy versus clean accuracy for the three different choices of R(x) on CIFAR-10.

• Blue: smoothing with logits. Purple: smoothing with probabilities.
• Conclusion: smoothing should be done on probabilities.

Better 
trade-off Better 

trade-off

Better 
trade-off



Mixing Probabilities is Better

• Conclusion: we should mix the base classifiers’ prediction probabilities.

• The resulting class-wise mixing formulation is:

SoftmaxConvert back to logits

Robust Base 
Classifier (RBC)

Accurate Base 
Classifier (ABC)

Mixed 
Classifier
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Intuition for mixing the probabilities

• The robust classifier h(·) is typically smooth or Lipschitz, and we want gα
CNN(·) to inherent these

properties.

• The accurate classifier g(·) is in general non-smooth and non-robust.

• If g(·) ∈ [0, 1] (probabilities), then the ''level of incorrectness'' can be bounded. It is then possible
for the smoothness of h(·) to overshadow the turbulence of g(·), ultimately making gα

CNN(·) robust.
-- Will present a Lemma to formalize this.

• If g(·) ∈ R (logits), then it can be arbitrarily unsmooth. h(·) may not be possible to correct g(·).
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Certifiably robust with a margin

To facilitate the proof for certified robust radii, we first introduce the notion ''robust with a margin''.

Definition
Consider an arbitrary input x ∈ Rd and let y = argmaxi hi(x), µ ∈ [0, 1], and r ≥ 0.
Then, h(·) is said to be certifiably robust at x with margin µ and radius r
if hy(x + δ) ≥ hi(x + δ) + µ for all i ∕= y and all δ ∈ Rd such that &δ&p ≤ r.

Lemma
Let x ∈ Rd and r ≥ 0.
If it holds that α ∈ [ 1

2
, 1] and h(·) is certifiably robust at x with margin 1−α

α
and radius r,

then the smoothed classifier gα
CNN(·) is robust in the sense that argmaxi gα

CNN,i(x + δ) = argmaxi hi(x) for
all δ ∈ Rd such that &δ&p ≤ r.

• Intuition: if h(·) is robust and confident, then it can override whatever g(·) predicts.

(Theoretically guaranteed robustness)
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Certifiably robust with a margin -- Proof

Lemma
(Restated.) If it holds that α ∈ [ 1

2
, 1] and h(·) is certifiably robust at x with margin 1−α

α
and radius r,

then argmaxi gα
CNN,i(x + δ) = argmaxi hi(x) for all δ ∈ Rd such that &δ&p ≤ r.

Proof
Since α ∈ [ 1

2
, 1], it holds that 1−α

α
∈ [0, 1].

Suppose that h(·) is certifiably robust at x with margin 1−α
α

and radius r.
Let y = argmaxi hi(x). Consider an arbitrary i ∈ [c] \ {y} and δ ∈ Rd such that &δ&p ≤ r. It holds that

exp
!
gα
CNN,y(x + δ)

"
− exp

!
gα
CNN,i(x + δ)

"
=(1− α)(gy(x + δ)− gi(x + δ)) + α(hy(x + δ)− hi(x + δ))

(Because gi(x + δ) ∈ [0, 1]) ≥(1− α)(0− 1) + α(hy(x + δ)− hi(x + δ))

≥(α− 1) + α
!
1−α
α

"
= 0.

Thus, it holds that gα
CNN,y(x + δ) ≥ gα

CNN,i(x + δ) for all i ∕= y, and thus
argmaxi gα

CNN,i(x + δ) = y = argmaxi hi(x). □



Mechanism for Improved Accuracy Trade-Off
• Empirically robust models are more 

confident when correct than when 
incorrect, even on attacked data.

• Some examples (SOTA models on various datasets):
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Mechanism for Improved Accuracy Trade-Off

• When 𝛼 is slightly greater than 0.5:
– On clean data, 𝑔(⋅) is better than ℎ ⋅ .

Since ℎ(⋅) is unconfident when making mistakes, it can be corrected by 𝑔 ⋅ ;

– On attacked data, ℎ(⋅) is better than 𝑔 ⋅ .
Since ℎ(⋅) is confident in correct predictions, it can overcome 𝑔 ⋅ . 

Robust Base 
Classifier (RBC)

Accurate Base 
Classifier (ABC)



Adaptive Smoothing: Flexible Mixing Ratio

• Recall the mixed classifier formulation:

SoftmaxConvert back to logits

Robust Base 
Classifier (RBC)

Accurate Base 
Classifier (ABC)

Mixed 
Classifier

• It makes sense to make the mixing ratio 𝜶 a function of 𝒙.



Adaptive Smoothing: Flexible Mixing Ratio
• It makes sense to make the mixing ratio 𝛼 a function of 𝑥.

– Make 𝛼(𝑥) small and prefer the ABC 𝒈(𝒙) when 𝑥 is natural (no attack).

– Make 𝛼(𝑥) large and prefer the RBC 𝒉(𝒙) when 𝑥 is adversarial.

• Parameterizing 𝛼 𝑥 : an additional neural network module.

Input !

Downstream Layers
(Frozen) Robust Model

Middle Layers

"(!)

ℎ(!)

Eq (3.4) Output
ℎ!!(!)

Global AvgPool + 
Linear + BN

Mixing
Network &"(!)RNB RNBRNB

Upstream Layers Middle Layers Downstream Layers

(Frozen) Standard Model

Upstream Layers
Mixing 
formulation



MixedNUTS: Nonlinear Mixed Classifier
• Recall: Mixed classifiers rely on the RBC ℎ(⋅)’s benign confidence properties.

– More confident in correct examples than incorrect ones.

• Confidence can be adjusted without changing predictions.
– (e.g., temperature scaling).

• Can we augment the benign properties to improve the mixed classifier?
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MixedNUTS: Nonlinear Mixed Classifier

• How to augment the benign properties?

• Apply a non-linear transformation 𝑀(⋅) to RBC ℎ(⋅)’s logits before Softmax 
and mixing.
– Notation: ℎ! 𝑥 = 𝑀 ℎ 𝑥 .

– Temperature scaling is a special case where 𝑀(⋅) is linear.

• Apply temperature scaling to ABC 𝑔(⋅)’s logits before Softmax and mixing.
– Ablation study shows that zero temperature (one-hot probabilities) works the best.



• Goal: optimize 𝑀(⋅)’s clean accuracy for a given robust accuracy 𝑟!.

• Consider the approximate problem

– The approximate problem decouples the optimization from 𝑔(⋅).

MixedNUTS: Nonlinear Mixed Classifier

Maximize mixed classifier clean accuracy
while maintaining robust accuracy

Minimize ℎ!(⋅)’s confidence margin at 
mispredicted clean data
while maintaining ℎ!(⋅)’s margin at correctly 
predicted worst-case adversarial data



Quality of Approximation
• Original goal:

• Approximate problem:

• The objectives are equivalent, (3)’s 
constraint is more conservative



Nonlinear Transformation Parameterization

• Step 1: Layer Norm (LN)
– Nonlinear transformations’ effect 

depends on the logits range.

– LN unifies the range.

– For each image 𝑥, we standardize 
the logits ℎ(𝑥) to have zero mean 
and variance one.

• Step 2: Clamp
– We use a ReLU-like function to clamp the 

logits smaller than a positive threshold 
toward zero.
• Introduce the threshold parameter 𝑐.

– Since correct predictions have greater 
margins, clamping enlarges the margin 
difference between correct and incorrect 
examples.

– We select GELU based on ablation studies.

So far, ℎ# 𝑥 = GELU(LN ℎ 𝑥 ) + 𝑐



Nonlinear Transformation Parameterization

• Step 3: Exponentiation
– Amplify large logits (common in 

correct predictions) to further 
enlarge the margin difference.

– Use absolute value to preserve logit 
sign.

– Introduce the exponent parameter 𝑝.

• Step 4: Temperature Scaling
– Softmax “saturates” with large 

logits.

– Temperature scaling allows for 
adjusting the level of saturation.

– Introduce the scale parameter 𝑠.

Final formulation:



Optimizing 𝒔, 𝒑, 𝒄, 𝜶

• Only three degrees of freedom.
– Because the robust accuracy 

constraint is always active.

• Algorithm: grid search over 𝑠, 𝑝, 𝑐 
and calculate 𝛼 via the constraint.

• Approximation for efficiency:
– Use ℎ(⋅) as a surrogate for ℎ!(⋅) in 

margin calculations, so that grid 
search doesn’t need to include attack.

• The resulting problem is then

– 𝛽 = 0.985 works well in practice.



Optimizing 
𝒔, 𝒑, 𝒄, 𝜶



Main Experiment Result
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• Mixed classifiers achieve state-of-the-art accuracy-robustness trade-off.



Main Experiment Result
• MixedNUTS’ nonlinear logit transformations improve the accuracy-

robustness trade-off.



Augmented Benign Margin Property
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• MixedNUTS’ nonlinear logit transformation augments the RBC’s benign 
confidence margin properties.



Future – Beyond Adversarial Robustness

• Beyond adversarial robustness:

– Generalized case: Model A specializes in Distribution 𝐴; Model B specializes in 
Distribution 𝐵; Distributions 𝐴, 𝐵 share the same classes. 

• Beyond classification:
– Language models: output the probabilities of candidate next word tokens.

• Existing models use mixtures of experts (MoE) to save computation (not all weights are 
activated).



Thank you!
Adaptive Smoothing: https://arxiv.org/abs/2301.12554
MixedNUTS: https://arxiv.org/abs/2402.02263

Presenter: Yatong Bai yatong_bai@berkeley.edu

 May 19, 2024
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