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1 Regular Points and Tangent Planes

1.1 Feasible Sets Formed by Equality Constraints Only

Consider the set X :=
󰀋
x ∈ Rn : hi(x) = 0, i = 1, . . . ,m

󰀌
.

• Regular point: A point y ∈ X is regular if ∇hi(y), i = 1, . . . ,m are linearly independent.

– ∇hi(y), i = 1, . . . ,m are linearly independent if ∃α1, . . .αm such that at least at least
one αi is non-zero and

󰁓m
i=1 αi∇hi(y) = 0.

– A zero vector is linearly dependent on any vector.

• Tangent plane: If a point y ∈ X is regular, then the tangent plane of X at y is defined as
T (y) := {∆y ∈ Rn : ∇hi(y)

⊤∆y = 0, i = 1, . . . ,m}.

– The dimension of the tangent plane is n−m.

1.2 Feasible Sets Formed by Equality and Inequality Constraints

Now, consider the set X̄ :=

󰀝
x ∈ Rn :

hi(x) = 0, i = 1, . . . ,m
gj(x) ≤ 0, j = 1, . . . , l

󰀞
.

Suppose that at a point y ∈ X̄ , some of the inequality constraints are active. I.e., there exists a set
of positive integers Jactive ⊆ {1, 2, . . . , l}, such that gj(y) = 0 for all j ∈ Jactive.

• Regular point: A point y ∈ X̄ is regular if all ∇hi(y) for i = 1, . . . ,m, as well as all ∇gj(y)
for j ∈ Jactive, are linearly independent.

• Tangent plane: If a point y ∈ X̄ is regular, then the tangent plane of X̄ at y is defined as

T (y) :=

󰀝
∆y ∈ Rn :

∇hi(y)
⊤∆y = 0, i = 1, . . . ,m

∇gj(y)
⊤∆y = 0, j ∈ Jactive

󰀞
.
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2 Optimality Conditions

2.1 Unconstrained Optimization Problems

Consider the optimization problem minx f(x).

• First-order condition (FOC): If x󰂏 is a local minimum, then ∇f(x󰂏) = 0.

• Second-order condition (SOC) necessary: If x󰂏 is a local minimum, then ∇2f(x󰂏) ≽ 0.

• Second-order condition (SOC) sufficient: If ∇f(x󰂏) = 0 and ∇2f(x󰂏) ≻ 0, then x󰂏 is a
strict local minimum.

• If ∇f(x󰂏) = 0 and ∇2f(x) ≽ 0 for all x ∈ Rn, then x󰂏 is a global min.

2.2 Equality Constrained Optimization Problems

Consider the optimization problem minx f(x) subject to hi(x) = 0 for i = 1, . . . ,m. Denote the
dual variables associated with the constraints as λ1, . . . ,λm. The Lagrangian function is then

L(x,λ, µ) := f(x) +

m󰁛

i=1

λihi(x).

• FOC: If x󰂏 is a regular point and a local minimum, then there exist Lagrangian multipliers
λ1󰂏, . . . ,λm󰂏 such that ∇f(x󰂏) +

󰁓m
i=1 λi󰂏∇hi(x󰂏) = 0.

• SOC necessary: If x󰂏 is a regular point and a local minimum, then 1
2∆x⊤M∆x ≥ 0 for all

∆x on the tangent plane T (x󰂏), where M is the Hessian of the Lagrangian, defined as

M := ∇2f(x󰂏) +

m󰁛

i=1

λi󰂏∇2hi(x󰂏).

– To make this condition practical and usable, we can construct a tangent plane basis
matrix E :=

󰀅
y1 . . . yn−m

󰀆
, where y1, . . . , yn−m are arbitrary vectors such that

∗ y1, . . . , yn−m ∈ T (x󰂏);

∗ y1, . . . , yn−m are linearly independent.

The SOC necessary condition can be written as E⊤ME ≽ 0.

• SOC sufficient: If x󰂏 is a regular point satisfying the FOC, then it is a local minimum if
1
2∆x⊤Mx󰂏∆x > 0 for all ∆x ∈ T (x󰂏) satisfying ∆x ∕= 0.

– The SOC sufficient condition can also be written as E⊤ME ≻ 0.

2.3 Equality and Inequality Constrained Optimization Problems

Consider the optimization problem
minx f(x)
s.t. hi(x) = 0, i = 1, . . . ,m,

gj(x) ≤ 0, j = 1, . . . , l.

Denote the dual variables associated with the equality constraints as λ1, . . . ,λm. Similarly, denote
the dual variables associated with the inequality constraints as µ1, . . . , µl. The Lagrangian of this
problem is then
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L(x,λ, µ) := f(x) +

m󰁛

i=1

λihi(x) +

l󰁛

j=1

µjgj(x).

• FOC: If x󰂏 is a regular point and a local minimum, then there exist Lagrangian multipliers
λ1󰂏, . . . ,λm󰂏 and µ1󰂏, . . . , µl󰂏 that makes the following holds true:

1. Primal Feasibility: hi(x󰂏) = 0 for all i = 1, . . . ,m and gj(x󰂏) ≤ 0 for all j = 1, . . . , l;

2. Dual Feasibility: µj󰂏 ≥ 0 for all j = 1, . . . l;

3. Lagrangian Stationarity: ∇f(x󰂏) +
󰁓m

i=1 λi󰂏∇hi(x󰂏) +
󰁓l

j=1 µj󰂏∇gj(x󰂏) = 0;

4. Complementary Slackness: µj󰂏 · gj(x󰂏) = 0 for all j = 1, . . . l.

These conditions are called the Karush–Kuhn–Tucker (KKT) conditions.

• SOC necessary: If x󰂏 is a regular point and a local minimum, then E⊤ME ≽ 0, where

M := ∇2f(x󰂏) +

m󰁛

i=1

λi󰂏∇2hi(x󰂏) +

l󰁛

j=1

µj󰂏∇2gj(x󰂏)

is the Hessian of the Lagrangian w.r.t. x, and E is the tangent plane basis matrix defined
the same as in Section 2.2.

• SOC sufficient: If x󰂏 is a regular point satisfying the FOC and is non-degenerate, then it
is a local minimum if E⊤ME ≻ 0.

– Non-degeneracy: x󰂏 is degenerate if there exists some j such that µj󰂏 = gj(x󰂏) = 0.

• For convex optimization problems, the KKT conditions can be used to find the global optima.

3 Sensitivity

If we compare the optimization problem

min
x

f(x) s. t. hi(x) = 0, gj(x) ≤ 0 (1)

with the problem that has perturbed constraints

min
x

f(x) s. t. hi(x) = 󰂃i, gj(x) ≤ 󰂃j (2)

where each 󰂃i and 󰂃j is a small number, then the optimal objective value of (2) f󰂃 can be approxi-
mated by

f󰂃 ≈ f󰂏 −
󰁛

i

λi󰂃i −
󰁛

j

µj󰂃j ,

where f󰂏 is the optimal objective value of (1), and λi and µj are the Lagrangian multipliers of (1).
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