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1 Convex Sets

• Affine combination:
󰁱󰁓k

i=1 αixi :
󰁓k

i=1 αi = 1
󰁲
.

• Convex combination:
󰁱󰁓k

i=1 αixi :
󰁓k

i=1 αi = 1,αi ≥ 0, ∀i
󰁲
.

• A set is affine if for every k points in the set, their affine combination is in the set.

– A hyperplane is an affine set, but a half-space is not.

• A set is convex if for every k points in the set, their convex combination is in the set.

– A polyhedron
󰀋
x : a⊤i x ≤ bi, c

⊤
j x = d, ∀i, j

󰀌
is a convex set.

– Norm balls and half-spaces are convex.

– The set of PD matrices is convex, and the set of PSD matrices is also convex.

• Convex hull of a set is the smallest convex set containing the set. This can be found by
obtaining the convex combination of any k points in the set.

• Operations that preserve convexity:

– The intersection of convex sets is convex (note that the union of convex sets may not be
convex).

– Affine transformation: consider a convex set S and an affine function f : Rn → Rm. The
set S̄ := {f(x) : x ∈ S} is convex.

– The projections of a convex set are convex.

2 Convex Functions

• A function f : Rn → R is convex if and only if its domain is a convex set and f(αx+(1−α)y) ≤
αf(x) + (1− α)f(y).

– This is the zeroth-order condition for convexity.
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– Replacing ≤ with < gives the definition of strict convexity.

– Thus, the set defined by {x : f(x) ≤ 0}, where f is a convex function, is a convex set.

• Convexity does not imply continuity.

– Example: consider an end point x̃ of domf . f can still be convex if it “jumps up” at x̃.

– The discontinuity should happen only on the boundaries.

• First-order convexity condition: f(y) + ∇f(y)⊤(x − y) ≤ f(x) for all x, y ∈ domf (replace
with < for strict convexity).

• Second-order convexity condition: f is convex if and only if ∇2f(x) ≽ 0 for all x ∈ domf .

– If ∇2f(x) ≻ 0 for all x ∈ domf , then f is strictly convex. The reverse direction may not
hold (e.g., f(x) = x4).

• Some example convex functions:

– f(x) = eax.

– f(x) = xa where a ≥ 1 or a ≤ 0 on R++.

– f(x) = − log(x) on R++.

– Any ℓp form function f(x) = 󰀂x󰀂p.

• Some properties of convex functions:

– The point-wise maximum of a set of convex functions is convex.

– If f(x) is convex, then g(x) = f(Ax+ b) is also convex.

– f(x) :=
󰁓k

i=1 αifi(x) for ai ≥ 0 is convex if fi is convex for all i.

3 Convex Optimization Problems

• Consider an optimization problem minx f(x) subject to x ∈ X . This problem is convex when

– f is a convex function;

– X is a convex set.

• Consider an optimization problem minx f(x) subject to gi(x) ≤ 0 for all i and hj(x) = 0 for
all j. This problem is convex when

– f is a convex function;

– gi is a convex function for each i;

– hi is an affine function for each j.

• For a convex optimization problem, all local solutions are global.
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