EECS 127/227A — Midterm Review

This note was summarized by Yatong Bai and Sam Pfrommer from UC Berkeley’s Fall 2024 EECS 127/227A
lecture notes created by Somayeh Sojoudi.

1 Linear Algebra - Vectors

1.1 Vector Space, Subspace, Affine Set, and Basis
* R™ is the space of vectors with n elements.

e Vectors (1), ... 2™ € R" are linearly dependent if there is a non-trivial linear combination ), a;zM which
is the zero vector. Otherwise, they are linearly independent.

* A non-empty set S C R" is a subspace if for all x,y € S and scalars «, 5 we have ax + By € S.

 For m vectors (1), ... 2™ € R", we define span(z(l), ...,x™) as the set of all linear combinations of
M, ... ™. This setis a subspace.
« Aset of vectors (1) ..., z(? is a basis for a subspace S if
- 2, ..., @ are linearly independent;
— For all z € S, there exist scalars oy, ..., a4 such that z = ZZ a;z,

« For a subspace S, the basis is not unique, but all bases have the same number of vectors, d. This number d is
the dimension of the subspace S.

e Aset X C R" is affine if there is a subspace S C R" and a vector 2® € R* such that X = 29 + S (adding
(9 to all vectors in S). To prove a set to be affine, first find #(°) and then show that X — 2(°) is a subspace.

1.2 Inner Product and Orthogonal Vectors

* For a pair of vectors z,y € R", the standard inner product (dot product) is
(z.y) =Ty =y z=a1y1+ - + ToYn.

o It holds that (z,y) = ||=||2|ly||2 cos(8), where @ is the angle between x and y.
* Two vectors are orthogonal if (x,y) = 0 (denoted = L y).

o dvectors (M) ... 2(9) are mutually orthogonal if (") | z() for all i # j. This guarantees that z(1), ... (¥
are linearly independent.

s Wesay z(M), ..., as_(d) are orthonormal if they are mutually orthogonal and have norm one.
Le., [|[®]3 = (z®, 2y = 1foralli = 1,...,d and (), 2)) = 0 for all i # j.
1.3 Vector Norms

* A function || - || : R® — R is a norm if

1. ||z]] > 0 forall z € R™ and ||z|| = 0 if and only if x = 0;
2. Nl +yll < llzll + lly] for all z, y € R™;
3. Jaz|| = |a|||z|| for all « € R, Vx € R™.
* An ¢, norm, for 1 < p < oo, is of the form ||z, = (|z1|P + -+ - + |z, [P) /7.

* We define ||z||o to be the number of non-zero elements in x. This is not a true norm but appears frequently.

* For an arbitrary vector x € R”, it holds that ||z||2 = z T x.
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1.4 Linear Functions and Affine Functions
* A function f(x) : R™ — R is linear if f(ax + by) = af(x) + bf(y) for all z,y € R™ and scalars a, b.
o If f(z) is linear, there exists an a € R” s.t. f(z) = a' 2.

* A function f(x) is affine if f(z) — f(0) is linear. This means f(x) = a'z + b for some a € R” and b € R.

1.5 Hyperplanes

* A hyperplane in R” is a (n — 1) dimensional affine set, can be written as H = {z € R" | a'z = b} fora
non-zero vector ¢ € R™ and scalar b.

a is called the normal vector of the hyperplane. Le., for any two vectors 2*, 22 € H, we have thata L (2! — 2?2).

* Hyperplanes divide R™ into half spaces H_ = {x |a'z < b}and Hy = {z | a'x > b}.

1.6 Projections
* Let S be a subspace of a space X'. The projection of a point z € X onto S is Ils(x) = argmin, ¢ 5 ||y — =||.

 The minimizer y* = IIs(x) exists and is unique. Furthermore, y* = IIs(x) if and only if (z — y*) L S.
Le., (z — y*) is orthogonal to every vector in S.

For projection onto an affine space, this condition becomes (z — y*) L (y —y*) forally € S.

— Suppose that V) ... y(® form a basis for the affine space S. ‘
We can find y* by solving for the set of equations y* € Sandy —y* L y® fori =1,...,d.

For projection onto a 1-dimensional subspace S = span(v), we have the formula ITg(z) = I

1)

Now generalize projection onto a subspace S = span(z!), ... (), where ("), ... (% are an orthonormal

basis: Ils(z) = Y, (z, )z,

2 Linear Algebra — Matrices
2.1 Range, Nullspace, and Rank

* The range of A is the set of all linear combinations of A’s columns: R(A4) = {Az | z € R"}.

* R(A)is asubspace, and its dimension is Rank(A), which is equal to the number of linearly independent columns
of A, and equal to the number of linearly independent rows.

* The nullspace of Ais N (A) = {z € R" | Az =0}.
 The nullspace is also a subspace. The fundamental theorem of linear algebra relates the null space and the range:
1. N(A) LR(AT);

2. N(A) @ R(AT) = R, where @ denotes “direct sum”. Le., any vector in R” can be decomposed into a
sum of a vector from the null space of A and a vector from the column space of AT ;

3. dim(N(A)) + Rank(A) = n.

2.2 Eigenvalues and Eigenvectors

 Consider a square matrix A € R™*", If there exists a scalar A and a vector v such that Av = A\v, then we say
that A is an eigenvalue of A and v is the corresponding eigenvector.

* To find the eigenvalues of A, we solve for A that makes det(A — AI) = 0.
Then, for each eigenvalue \;, we can solve Av(") = \;v(*) to find the corresponding eigenvector v(*).
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2.3

24

2.5

If A is rank-deficient (not full rank, i.e., there are linear dependent rows/columns), then its determinant is 0 and
at least one of its eigenvalues is 0.

AAT and AT A share the same non-zero eigenvalues.

A’s trace (sum of the diagonal entries) is equal to the sum of its eigenvalues.

Symmetric Matrices and Positive/Negative (Semi)Definite Matrices
A square matrix A € R™*" is symmetric if A = AT. We denote the set of all n x n symmetric matrices as S™.
The eigenvalues of a symmetric matrix are all real.

A symmetric matrix A € S™ is positive semidefinite (PSD) if all eigenvalues are non-negative.
Le., A (A), ..., A (A) > 0. The corresponding notation is A = 0 or A 3= 0.

An alternative PSD definition: A matrix A € S™ is PSD if the scalar 2 " Ax is non-negative for all z € R™.
Note: showing that all elements of a matrix are non-negative does NOT prove PSD.

A symmetric matrix A € S” is positive definite (PD) if all eigenvalues are strictly positive.
Le., A1(A), ..., A\n(A4) > 0. The corresponding notation is A > 0.
Alternatively, A is PD if 7 Az > 0 for all = # 0.

An easier way to check whether a matrix is PD without calculating eigenvalues: A symmetric matrix A is PD if
and only if all of its leading principal minors are strictly positive.

A symmetric matrix A is negative semidefinite (NSD) if A (A),..., A\, (A) <0orz" Az < 0 forall z € R".
A symmetric matrix A is negative definite (ND) if A; (A),...,\,(A) < Oorz' Az < 0 for all = # 0.
All PD matrices are PSD and all ND matrices are NSD.

A matrix neither PSD nor NSD is called sign indefinite. It has at least one positive and one negative eigenvalue.

Orthogonal Matrices

A square matrix U € R™*" with columns u("), ..., u(" is called orthogonal if its columns are orthonormal to
each other. I.e., the columns are mutually orthogonal and have norm 1.
Le., for arbitrary pairs of i, j € {1,...,n}, we have (u(V,u)) is 1ifi = j and 0 if i # j.

A matrix U is orthogonal if and only if U U = I,,, where I,, denotes the n x n identity matrix. Le., U = U1,

An identity matrix is orthogonal. It is also diagonal and full-rank.

Eigenvalue Decomposition and Spectral Theorem

Consider A € R™*™ with eigenvalues A1, ..., \,. Let ), ... u(™ be arbitrary eigenvectors each associated
with one eigenvalue.

Assume u(D, ..., u(™ are linearly independent. Then, A can be decomposed as UAU ~*,
where U = [u(l) e u(”)] and A = diag(\q, ..., A,). We say A is a diagonalizable matrix.
If A1,..., A\, are all distinct, A is always diagonalizable. If A has repeated eigenvalues, Theorem 3.4 of our

textbook Optimization Model. G.C. Calafiore and L. El Ghaoui explains when linearly independent eigenvectors
exist.

Spectral theorem: Consider a symmetric matrix A € S”. For each eigenvalue );, select an eigenvector u(*) with
length 1 to assemble the matrix U. Then, it holds that A = UAU T ie.,Uisan orthogonal matrix.

Symmetric matrices are always diagonalizable.
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2.6 Singular Value Decomposition (SVD)

¢ SVD Theorem: Given an arbitrary (not necessarily square) matrix A € R™*" there exist matrices U € R"*™,
V € R"*™ and ¥ € R™*"™ such that:

1. A=UXVT.
2. U and V are each orthogonal matrices, i.e., U U = I,, and V'V = I,,.
o 0 0 0
g9 0 0
3. ¥ is a “rectangular diagonal matrix” in the form of | | . . . ifn>m
(07 O 0] 0 O om 0
0 g2 0
and in the foomof [ 0 0 onl| ifn <m,where oy > 09 > --- > 0.
0 0 0
0o 0 - 0]
* 01,09,...are called the singular values of A.
¢ Let r be the number of non-zero singular values of A, i.e.,01 > 09> ...> 0, > 0p11 =0py2=...=0.

It holds that r = Rank(A).

non-zero

* If A is symmetric and PSD, then its eigenvalues and singular values are the same, and its eigenvalue decompo-
sition A = UAU T is a valid SVD. However, eigenvalues and singular values are different in general.

* Finding SVD by hand:
The non-zero singular values of A are the square root of the non-zero eigenvalues of AAT or AT A.
The columns of U (called the left singular vectors) are the eigenvectors of AAT.
The columns of V' (called the right singular vectors) are the eigenvectors of AT A.

e If oA, where « is some non-negative real scalar, is an orthogonal matrix, then one possible SVD for A is
A=1I,12(aq).

2.7 Matrix Pseudo-Inverse
* The pseudo-inverse (or Moore-Penrose inverse) of a matrix A = ULV T is AT = VXTU T, where
Yoy =oo 0 oo 0]
Yoy = 0 - 0 0 -+ 0 N
. . . . . o - Yo -+ 0
st=10 Vs, -0 0 0 0l ifn<mandst= | ° o it > m,

. . . . 0 0 0
: . : I 0 0 0

O --- 0 - 00 ---0 )
0 0 0]

i.e., we take the inverse of the positive singular values and fill the rest with zero.
« If A is invertible, then AT = A~! and therefore AAT = I,,. However, AAT does not produce I, in general.

e If A € R™*" has linearly independent rows, i.e., n > m = Rank(A), then AT = AT (AAT)"L.
If A € R™*™ has linearly independent columns, i.e., m > n = Rank(A), then AT = (AT A)~1AT.
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2.8

Matrix Norms

Consider a matrix A € R™*™,

3.2

Frobenius norm: ||A||p := ||vec(A)||2, where the vector vec(A) € R™" is a concatenation of all columns of A.
le., A frob = (A *x 2).sum().sqrt () with Python-like pseudo code.

It holds that || A]|%. is equal to the sum of the squared singular values of 4, i.e., [|A||% = >.I_, 07 (A).

lA=lp
ll=

¢,-induced norm: || Al|, = max,crn 0 i
»

= IaX||y|,=1 HAw”P
One example of the ¢,-induced norm is the spectral norm for p = 2.

— It holds that ||A]l2 = 01(A) = \/Amax(ATA), where o1(A) is the largest singular value of A and
Amax (AT A) is the largest eigenvalue of AT A.

Optimization Problems

Standard Form and Constraints

Consider functions f; : R® — R for¢ =0, ..., n. The standard form of optimization problems is
mﬁl@n fo(z) subjectto fi(x) <0, Vi=1,...,m. ()
z€ER"

Equality constraints can be converted into inequality constraints.
For some function h : R” — R, it holds that h(z) =0 <= {h(z) <0, —h(z) < 0}.

Consider the optimization problem (1). A point y € R" is called feasible if f;(y) < O0foralli € 1,...,m.
Furthermore, the feasible set A’ is the set of all feasible points: X = {x € R™ | fi(z) <0, Vi€ 1,...,m}.

A point z* € R is a global minimum if fy(z*) < fo(z) forallz € X.

Consider an arbitrary function f(x). Suppose that some z is the optimal solution to min, f(z), then it is also
optimal for max, — f(z) and min, o f (x), where o > 0 is any positive scalar.

Optimization Problem Solution Types

Infeasible: There is no input that satisfies all the constraints. E.g., we have constraints x > 1 and x < 0.

Unbounded: The optimal objective value of the minimization problem is negative infinity. E.g., minimize =
without constraints.

Unattainable: There is no finite solution. E.g., minimize % subject to x > 0 (we can always improve the solution
by increasing x).

Tractable: There is an algorithm to solve it efficiently (polynomial time). Otherwise, the problem is intractable.

Optimal objective value is +oo if infeasible, —oo if unbounded from below, and finite otherwise (z* may or
may not be attainable).

4 Optimality Conditions

4.1

Gradient and Hessian

Consider a function f(z) : R™ — R and assume f(x) is twice continuously differentiable. Let x; denote the i-th entry
ofxfori=1,...,n.
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4.2

sant i ; ; — (Of Of of
The gradient is an n-dimensional vector V f (z) = (ml Bz Ban )
o%f o’ f ol
011011 01012 Ox10x,
o f 0% f Lok
The Hessian is an n x n symmetric matrix V2 f(z) == 812.6:”1 812_‘%2 8“?“‘
o’f o ... _0f
Oz, 0x1 Oz 0x2 0%y, Oy,

If n = 1, then the gradient is the first-order derivative and the Hessian is the second-order derivative.

Suppose that f(z) is quadratic, i.e., f(x) = xT Pz + ¢« + r for some P € S”, ¢ € R", and r € R. Then, it
holds that V f(x) = 2Pz + q and V2 f(z) = 2P.

Gradient chain rule: Consider functions f : R™ — R and g : R™ — R™. Define ¢(z) := f(g(z)). Then

Vo(z) = [Var(z) ... Vgm(x)] x VI(2)|zg@) -
~——
n-dimensional vector n X 1m matrix 'm-dimensional vector

Taylor series approximation: given a function f(z) : R™ — R that is differentiable at zy € R™, it can be
approximated by an affine function in a neighborhood of x¢:

f(@) = f(zo) + V(o) " (& — o) + e(a),
where e(z) goes to zero faster than first order, i.e., lim, ., % =0.

— So, to first order we have the approximation: f(x) =~ f(z¢) + Vf(z0) " (x — o).

Optimality Conditions for Unconstrained Optimization Problems

Consider the optimization problem min,cg~ f(x), where f is differentiable.

First-order necessary condition: If «* is a local minimum, then V f(z*) = 0.
Suppose that V2 f(z) = 0 for all * € R™. Then,

— All local minima are global minima.

— z* is a global minimum (and a local minimum) if and only if V f(z*) = 0.

5 Linear Systems and Least Squares

5.1

Solving Linear Systems

Consider solving a system of linear equations Ax = y.

Az = y has a unique solution if and only if y € R(A) and N'(A) = {0}.
If A’s nullspace satisfies N'(A) # {0}, any solution z* produces a space of solutions z* + z where z € N/(A).

Tall matrix: if A € R™*™, where m > n, then we have an overdetermined case, and there is likely no solution
unless we are lucky and y € R(A).

Fat matrix: now assume n > m, and our rows are linearly independent. Now we have an underdetermined case,
and the solution space is T + N (A) where Z is an arbitrary solution.
For many applications, the “best” solution is the one with minimum norm:

min ||z| subjectto Az =y.
zeRn

The minimum-norm solution can be derived as 2* = AT (AAT) 1y = Afy.

If A is square and full-rank (invertible), we can solve directly z = A~ 1y.
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5.2 Least Squares (LS)

What if we are in the overdetermined case and y is not in the range of A? We need to minimize how much we violate
the equation Ax = y, instead of solving it exactly.

* Given a matrix A € R™*" and a vector y € R™, we aim to solve the problem min,egn |4z — y||2.
* Denote the optimal solution as #*. Note that 2* also solves min,egn || Az — y||3.
* The set of solutions for the LS problem is S := {z* | AT Az* = ATy}. Proof: optimality conditions.

e It holds that S = ATy + A/(A), where AT is the pseudo-inverse of A as defined above.

5.3 Relationships between Least Squares and Projection
* Geometrically, the LS problem finds the projection of y onto R(A), the range of A.
* The projection result y* := Az* = Il 4)y exists and is unique.
* Theorem on projection: y — y* L R(A). Le., (y — y*,v) =0 forallv € R(A).

* We can find y* by solving for the vector that simultaneously satisfies y* € R(A) and y — y* L R(A).

5.4 Minimum-Norm Solution to Least Squares
* To find the minimum-norm solution, solve min,es ||z||2. L.e., mingegn |22 subject to AT Az = ATy.
* The minimum-norm LS solution is unique and equal to Afy = (AT A)71ATy.
* If A has full column rank, i.e., m > n = Rank(A), then AT A is invertible and N'(A4) = {0}.
In this case, * = Aty is the unique LS solution.
5.5 Ridge Regression
* A regularized LS problem: mingeg» ||Az — y||3 + af|z||3 where « is a non-negative scalar.

s The matrix AT A + al, is invertible, and the unique solution to the ridge regression problem is
v =(ATA+al,) ATy

6 Low-Rank Matrix Approximation

Given a matrix A € R™*", consider the problem of finding a low-rank matrix B € R”*" that best approximates A.
* This problem can be formulated as mingcgmxn ||[A — B||2 or 7 subject to Rank(B) < k.
 Eckart-Young-Mirsky theorem:

— For a given k& < min(m, n), define Ay, = Zle o;uDv@T constructed with the top & singular values of
A and the corresponding left/right singular vectors. Ay has rank at most k. Intuitively, we “chop off” the
smaller singular values starting from the k£ + 1-th largest.

— B = Ay, is an optimal solution to both optimization problems (Frobenius or ¢5-induced norm).

— Suppose that k& < Rank(A). The optimal solution is unique if and only if o, # ok41, i.e., the k-th largest
singular value of A is not equal to the k + 1.

: : : : — A-AT . Thyrtotor _

* The relative Frobenius norm approximation error ey = TNz s equal to - where = Rank(A).
. . L A—Agll -

* The relative £5-induced norm approximation error w is equal to 0(’;—?1
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