
EECS 127/227A – Midterm Review
This note was summarized by Yatong Bai and Sam Pfrommer from UC Berkeley’s Fall 2024 EECS 127/227A

lecture notes created by Somayeh Sojoudi.

1 Linear Algebra – Vectors

1.1 Vector Space, Subspace, Affine Set, and Basis
• Rn is the space of vectors with n elements.

• Vectors x(1), . . . , xm ∈ Rn are linearly dependent if there is a non-trivial linear combination
∑

i αix
(i) which

is the zero vector. Otherwise, they are linearly independent.

• A non-empty set S ⊆ Rn is a subspace if for all x, y ∈ S and scalars α, β we have αx+ βy ∈ S.

• For m vectors x(1), . . . , xm ∈ Rn, we define span(x(1), . . . , xm) as the set of all linear combinations of
x(1), . . . , xm. This set is a subspace.

• A set of vectors x(1), . . . , x(d) is a basis for a subspace S if

– x(1), . . . , x(d) are linearly independent;

– For all x ∈ S, there exist scalars α1, . . . , αd such that x =
∑

i αix
(i).

• For a subspace S , the basis is not unique, but all bases have the same number of vectors, d. This number d is
the dimension of the subspace S.

• A set X ⊆ Rn is affine if there is a subspace S ⊆ Rn and a vector x(0) ∈ Rn such that X = x(0) + S (adding
x(0) to all vectors in S). To prove a set to be affine, first find x(0) and then show that X − x(0) is a subspace.

1.2 Inner Product and Orthogonal Vectors
• For a pair of vectors x, y ∈ Rn, the standard inner product (dot product) is
⟨x, y⟩ = x⊤y = y⊤x = x1y1 + · · ·+ xnyn.

• It holds that ⟨x, y⟩ = ∥x∥2∥y∥2 cos(θ), where θ is the angle between x and y.

• Two vectors are orthogonal if ⟨x, y⟩ = 0 (denoted x ⊥ y).

• d vectors x(1), . . . , x(d) are mutually orthogonal if x(i) ⊥ x(j) for all i ̸= j. This guarantees that x(1), . . . , x(d)

are linearly independent.

• We say x(1), . . . , x(d) are orthonormal if they are mutually orthogonal and have norm one.
I.e., ∥x(i)∥22 = ⟨x(i), x(i)⟩ = 1 for all i = 1, . . . , d and ⟨x(i), x(j)⟩ = 0 for all i ̸= j.

1.3 Vector Norms
• A function ∥ · ∥ : Rn → R is a norm if

1. ∥x∥ ≥ 0 for all x ∈ Rn and ∥x∥ = 0 if and only if x = 0;

2. ∥x+ y∥ ≤ ∥x∥+ ∥y∥ for all x, y ∈ Rn;

3. ∥αx∥ = |α|∥x∥ for all α ∈ R,∀x ∈ Rn.

• An ℓp norm, for 1 ≤ p < ∞, is of the form ∥x∥p = (|x1|p + · · ·+ |xn|p)1/p.

• We define ∥x∥0 to be the number of non-zero elements in x. This is not a true norm but appears frequently.

• For an arbitrary vector x ∈ Rn, it holds that ∥x∥22 = x⊤x.

© EECS 127 Fall 2024. Somayeh Sojoudi. This content is protected and may not be shared, uploaded, or distributed. 1



1.4 Linear Functions and Affine Functions
• A function f(x) : Rn → R is linear if f(ax+ by) = af(x) + bf(y) for all x, y ∈ Rn and scalars a, b.

• If f(x) is linear, there exists an a ∈ Rn s.t. f(x) = a⊤x.

• A function f(x) is affine if f(x)− f(0) is linear. This means f(x) = a⊤x+ b for some a ∈ Rn and b ∈ R.

1.5 Hyperplanes
• A hyperplane in Rn is a (n − 1) dimensional affine set, can be written as H = {z ∈ Rn | a⊤z = b} for a

non-zero vector a ∈ Rn and scalar b.

• a is called the normal vector of the hyperplane. I.e., for any two vectors z1, z2 ∈ H , we have that a ⊥ (z1−z2).

• Hyperplanes divide Rn into half spaces H− = {x | a⊤x ≤ b} and H+ = {x | a⊤x ≥ b}.

1.6 Projections
• Let S be a subspace of a space X . The projection of a point x ∈ X onto S is ΠS(x) = argminy∈S ∥y − x∥.

• The minimizer y⋆ = ΠS(x) exists and is unique. Furthermore, y⋆ = ΠS(x) if and only if (x− y⋆) ⊥ S.
I.e., (x− y⋆) is orthogonal to every vector in S.

• For projection onto an affine space, this condition becomes (x− y⋆) ⊥ (y − y⋆) for all y ∈ S.

– Suppose that y(1), . . . , y(d) form a basis for the affine space S .
We can find y⋆ by solving for the set of equations y⋆ ∈ S and y − y⋆ ⊥ y(i) for i = 1, . . . , d.

• For projection onto a 1-dimensional subspace S = span(v), we have the formula ΠS(x) =
⟨x,v⟩
∥v∥2 v.

• Now generalize projection onto a subspace S = span(x(1), . . . , x(d)), where x(1), . . . , x(d) are an orthonormal
basis: ΠS(x) =

∑
i⟨x, x(i)⟩x(i).

2 Linear Algebra – Matrices

2.1 Range, Nullspace, and Rank
• The range of A is the set of all linear combinations of A’s columns: R(A) = {Ax | x ∈ Rn}.

• R(A) is a subspace, and its dimension is Rank(A), which is equal to the number of linearly independent columns
of A, and equal to the number of linearly independent rows.

• The nullspace of A is N (A) = {x ∈ Rn | Ax = 0}.

• The nullspace is also a subspace. The fundamental theorem of linear algebra relates the null space and the range:

1. N (A) ⊥ R(A⊤);

2. N (A) ⊕ R(A⊤) = Rn, where ⊕ denotes “direct sum”. I.e., any vector in Rn can be decomposed into a
sum of a vector from the null space of A and a vector from the column space of A⊤;

3. dim(N (A)) + Rank(A) = n.

2.2 Eigenvalues and Eigenvectors
• Consider a square matrix A ∈ Rn×n. If there exists a scalar λ and a vector v such that Av = λv, then we say

that λ is an eigenvalue of A and v is the corresponding eigenvector.

• To find the eigenvalues of A, we solve for λ that makes det(A− λI) = 0.
Then, for each eigenvalue λi, we can solve Av(i) = λiv

(i) to find the corresponding eigenvector v(i).
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• If A is rank-deficient (not full rank, i.e., there are linear dependent rows/columns), then its determinant is 0 and
at least one of its eigenvalues is 0.

• AA⊤ and A⊤A share the same non-zero eigenvalues.

• A’s trace (sum of the diagonal entries) is equal to the sum of its eigenvalues.

2.3 Symmetric Matrices and Positive/Negative (Semi)Definite Matrices
• A square matrix A ∈ Rn×n is symmetric if A = A⊤. We denote the set of all n× n symmetric matrices as Sn.

• The eigenvalues of a symmetric matrix are all real.

• A symmetric matrix A ∈ Sn is positive semidefinite (PSD) if all eigenvalues are non-negative.
I.e., λ1(A), . . . , λn(A) ≥ 0. The corresponding notation is A ⪰ 0 or A ≽ 0.

• An alternative PSD definition: A matrix A ∈ Sn is PSD if the scalar x⊤Ax is non-negative for all x ∈ Rn.

• Note: showing that all elements of a matrix are non-negative does NOT prove PSD.

• A symmetric matrix A ∈ Sn is positive definite (PD) if all eigenvalues are strictly positive.
I.e., λ1(A), . . . , λn(A) > 0. The corresponding notation is A ≻ 0.
Alternatively, A is PD if x⊤Ax > 0 for all x ̸= 0.

• An easier way to check whether a matrix is PD without calculating eigenvalues: A symmetric matrix A is PD if
and only if all of its leading principal minors are strictly positive.

• A symmetric matrix A is negative semidefinite (NSD) if λ1(A), . . . , λn(A) ≤ 0 or x⊤Ax ≤ 0 for all x ∈ Rn.

• A symmetric matrix A is negative definite (ND) if λ1(A), . . . , λn(A) < 0 or x⊤Ax < 0 for all x ̸= 0.

• All PD matrices are PSD and all ND matrices are NSD.

• A matrix neither PSD nor NSD is called sign indefinite. It has at least one positive and one negative eigenvalue.

2.4 Orthogonal Matrices
• A square matrix U ∈ Rn×n with columns u(1), . . . , u(n) is called orthogonal if its columns are orthonormal to

each other. I.e., the columns are mutually orthogonal and have norm 1.
I.e., for arbitrary pairs of i, j ∈ {1, . . . , n}, we have ⟨u(i), u(j)⟩ is 1 if i = j and 0 if i ̸= j.

• A matrix U is orthogonal if and only if U⊤U = In, where In denotes the n×n identity matrix. I.e., U⊤ = U−1.

• An identity matrix is orthogonal. It is also diagonal and full-rank.

2.5 Eigenvalue Decomposition and Spectral Theorem
• Consider A ∈ Rm×n with eigenvalues λ1, . . . , λn. Let u(1), . . . , u(n) be arbitrary eigenvectors each associated

with one eigenvalue.

• Assume u(1), . . . , u(n) are linearly independent. Then, A can be decomposed as UΛU−1,
where U =

[
u(1) . . . u(n)

]
and Λ = diag(λ1, . . . , λn). We say A is a diagonalizable matrix.

• If λ1, . . . , λn are all distinct, A is always diagonalizable. If A has repeated eigenvalues, Theorem 3.4 of our
textbook Optimization Model. G.C. Calafiore and L. El Ghaoui explains when linearly independent eigenvectors
exist.

• Spectral theorem: Consider a symmetric matrix A ∈ Sn. For each eigenvalue λi, select an eigenvector u(i) with
length 1 to assemble the matrix U . Then, it holds that A = UΛU⊤, i.e., U is an orthogonal matrix.

• Symmetric matrices are always diagonalizable.
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2.6 Singular Value Decomposition (SVD)
• SVD Theorem: Given an arbitrary (not necessarily square) matrix A ∈ Rm×n, there exist matrices U ∈ Rm×m,
V ∈ Rn×n, and Σ ∈ Rm×n such that:

1. A = UΣV ⊤.

2. U and V are each orthogonal matrices, i.e., U⊤U = Im and V ⊤V = In.

3. Σ is a “rectangular diagonal matrix” in the form of


σ1 0 · · · 0 0 · · · 0
0 σ2 · · · 0 0 · · · 0
...

...
. . .

...
...

. . .
...

0 0 · · · σm 0 · · · 0

 if n ≥ m

and in the form of



σ1 0 · · · 0
0 σ2 · · · 0
...

...
. . .

...
0 0 · · · σn

0 0 · · · 0
...

...
. . .

...
0 0 · · · 0


if n ≤ m, where σ1 ≥ σ2 ≥ · · · ≥ 0.

• σ1, σ2, . . . are called the singular values of A.

• Let r be the number of non-zero singular values of A, i.e., σ1 ≥ σ2 ≥ . . . ≥ σr︸ ︷︷ ︸
non-zero

> σr+1 = σr+2 = . . . = 0.
It holds that r = Rank(A).

• If A is symmetric and PSD, then its eigenvalues and singular values are the same, and its eigenvalue decompo-
sition A = UΛU⊤ is a valid SVD. However, eigenvalues and singular values are different in general.

• Finding SVD by hand:
The non-zero singular values of A are the square root of the non-zero eigenvalues of AA⊤ or A⊤A.
The columns of U (called the left singular vectors) are the eigenvectors of AA⊤.
The columns of V (called the right singular vectors) are the eigenvectors of A⊤A.

• If αA, where α is some non-negative real scalar, is an orthogonal matrix, then one possible SVD for A is
A = In

In
α (αA).

2.7 Matrix Pseudo-Inverse
• The pseudo-inverse (or Moore-Penrose inverse) of a matrix A = UΣV ⊤ is A† = V Σ†U⊤, where

Σ† =



1/σ1 · · · 0 · · · 0 0 · · · 0
...

. . .
...

. . .
...

...
. . .

...
0 · · · 1/σr · · · 0 0 · · · 0
...

. . .
...

. . .
...

...
. . .

...
0 · · · 0 · · · 0 0 · · · 0

 if n ≤ m and Σ† =



1/σ1 · · · 0 · · · 0
...

. . .
...

. . .
...

0 · · · 1/σr · · · 0
...

. . .
...

. . .
...

0 · · · 0 · · · 0
0 · · · 0 · · · 0
...

. . .
...

. . .
...

0 · · · 0 · · · 0


if n ≥ m,

i.e., we take the inverse of the positive singular values and fill the rest with zero.

• If A is invertible, then A† = A−1 and therefore AA† = In. However, AA† does not produce In in general.

• If A ∈ Rm×n has linearly independent rows, i.e., n ≥ m = Rank(A), then A† = A⊤(AA⊤)−1.
If A ∈ Rm×n has linearly independent columns, i.e., m ≥ n = Rank(A), then A† = (A⊤A)−1A⊤.
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2.8 Matrix Norms
Consider a matrix A ∈ Rm×n.

• Frobenius norm: ∥A∥F := ∥vec(A)∥2, where the vector vec(A) ∈ Rmn is a concatenation of all columns of A.
I.e., A frob = (A ** 2).sum().sqrt() with Python-like pseudo code.

• It holds that ∥A∥2F is equal to the sum of the squared singular values of A, i.e., ∥A∥2F =
∑r

i=1 σ
2
i (A).

• ℓp-induced norm: ∥A∥p := maxz∈Rn,z ̸=0
∥Az∥p

∥z∥p
= max∥w∥p=1 ∥Aw∥p.

• One example of the ℓp-induced norm is the spectral norm for p = 2.

– It holds that ∥A∥2 = σ1(A) =
√
λmax(A⊤A), where σ1(A) is the largest singular value of A and

λmax(A
⊤A) is the largest eigenvalue of A⊤A.

3 Optimization Problems

3.1 Standard Form and Constraints
• Consider functions fi : Rn 7→ R for i = 0, . . . , n. The standard form of optimization problems is

min
x∈Rn

f0(x) subject to fi(x) ≤ 0, ∀i = 1, . . . ,m. (1)

• Equality constraints can be converted into inequality constraints.
For some function h : Rn 7→ R, it holds that h(x) = 0 ⇐⇒ {h(x) ≤ 0,−h(x) ≤ 0}.

• Consider the optimization problem (1). A point y ∈ Rn is called feasible if fi(y) ≤ 0 for all i ∈ 1, . . . ,m.
Furthermore, the feasible set X is the set of all feasible points: X = {x ∈ Rn | fi(x) ≤ 0, ∀i ∈ 1, . . . ,m}.

• A point x⋆ ∈ Rn is a global minimum if f0(x⋆) ≤ f0(x) for all x ∈ X .

• Consider an arbitrary function f(x). Suppose that some x is the optimal solution to minx f(x), then it is also
optimal for maxx −f(x) and minx αf(x), where α > 0 is any positive scalar.

3.2 Optimization Problem Solution Types
• Infeasible: There is no input that satisfies all the constraints. E.g., we have constraints x > 1 and x < 0.

• Unbounded: The optimal objective value of the minimization problem is negative infinity. E.g., minimize x
without constraints.

• Unattainable: There is no finite solution. E.g., minimize 1
x subject to x > 0 (we can always improve the solution

by increasing x).

• Tractable: There is an algorithm to solve it efficiently (polynomial time). Otherwise, the problem is intractable.

• Optimal objective value is +∞ if infeasible, −∞ if unbounded from below, and finite otherwise (x⋆ may or
may not be attainable).

4 Optimality Conditions

4.1 Gradient and Hessian
Consider a function f(x) : Rn 7→ R and assume f(x) is twice continuously differentiable. Let xi denote the i-th entry
of x for i = 1, . . . , n.
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• The gradient is an n-dimensional vector ∇f(x) :=
(

∂f
∂x1

, ∂f
∂x2

, . . . , ∂f
∂xn

)
.

• The Hessian is an n× n symmetric matrix ∇2f(x) :=


∂2f

∂x1∂x1

∂2f
∂x1∂x2

· · · ∂2f
∂x1∂xn

∂2f
∂x2∂x1

∂2f
∂x2∂x2

· · · ∂2f
∂x2∂xn

...
...

. . .
...

∂2f
∂xn∂x1

∂2f
∂xn∂x2

· · · ∂2f
∂xn∂xn

.

• If n = 1, then the gradient is the first-order derivative and the Hessian is the second-order derivative.

• Suppose that f(x) is quadratic, i.e., f(x) = x⊤Px + q⊤x + r for some P ∈ Sn, q ∈ Rn, and r ∈ R. Then, it
holds that ∇f(x) = 2Px+ q and ∇2f(x) = 2P .

• Gradient chain rule: Consider functions f : Rm → R and g : Rn → Rm. Define ϕ(x) := f(g(x)). Then

∇ϕ(x)︸ ︷︷ ︸
n-dimensional vector

=
[
∇g1(x) . . . ∇gm(x)

]︸ ︷︷ ︸
n×m matrix

× ∇f(z)|z=g(x)︸ ︷︷ ︸
m-dimensional vector

.

• Taylor series approximation: given a function f(x) : Rn → R that is differentiable at x0 ∈ Rn, it can be
approximated by an affine function in a neighborhood of x0:

f(x) = f(x0) +∇f(x0)
⊤(x− x0) + ϵ(x),

where ϵ(x) goes to zero faster than first order, i.e., limx→x0

ϵ(x)
∥x−x0∥ = 0.

– So, to first order we have the approximation: f(x) ≈ f(x0) +∇f(x0)
⊤(x− x0).

4.2 Optimality Conditions for Unconstrained Optimization Problems
Consider the optimization problem minx∈Rn f(x), where f is differentiable.

• First-order necessary condition: If x⋆ is a local minimum, then ∇f(x⋆) = 0.

• Suppose that ∇2f(x) ⪰ 0 for all x ∈ Rn. Then,

– All local minima are global minima.
– x⋆ is a global minimum (and a local minimum) if and only if ∇f(x⋆) = 0.

5 Linear Systems and Least Squares

5.1 Solving Linear Systems
Consider solving a system of linear equations Ax = y.

• Ax = y has a unique solution if and only if y ∈ R(A) and N (A) = {0}.

• If A’s nullspace satisfies N (A) ̸= {0}, any solution x⋆ produces a space of solutions x⋆ + z where z ∈ N (A).

• Tall matrix: if A ∈ Rm×n, where m > n, then we have an overdetermined case, and there is likely no solution
unless we are lucky and y ∈ R(A).

• Fat matrix: now assume n > m, and our rows are linearly independent. Now we have an underdetermined case,
and the solution space is x̄+N (A) where x̄ is an arbitrary solution.
For many applications, the “best” solution is the one with minimum norm:

min
x∈Rn

∥x∥ subject to Ax = y.

The minimum-norm solution can be derived as x⋆ = A⊤(AA⊤)−1y = A†y.

• If A is square and full-rank (invertible), we can solve directly x = A−1y.
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5.2 Least Squares (LS)
What if we are in the overdetermined case and y is not in the range of A? We need to minimize how much we violate
the equation Ax = y, instead of solving it exactly.

• Given a matrix A ∈ Rm×n and a vector y ∈ Rm, we aim to solve the problem minx∈Rn ∥Ax− y∥2.

• Denote the optimal solution as x⋆. Note that x⋆ also solves minx∈Rn ∥Ax− y∥22.

• The set of solutions for the LS problem is S := {x⋆ | A⊤Ax⋆ = A⊤y}. Proof: optimality conditions.

• It holds that S = A†y +N (A), where A† is the pseudo-inverse of A as defined above.

5.3 Relationships between Least Squares and Projection
• Geometrically, the LS problem finds the projection of y onto R(A), the range of A.

• The projection result y⋆ := Ax⋆ = ΠR(A)y exists and is unique.

• Theorem on projection: y − y⋆ ⊥ R(A). I.e., ⟨y − y⋆, v⟩ = 0 for all v ∈ R(A).

• We can find y⋆ by solving for the vector that simultaneously satisfies y⋆ ∈ R(A) and y − y⋆ ⊥ R(A).

5.4 Minimum-Norm Solution to Least Squares
• To find the minimum-norm solution, solve minx∈S ∥x∥2. I.e., minx∈Rn ∥x∥2 subject to A⊤Ax = A⊤y.

• The minimum-norm LS solution is unique and equal to A†y = (A⊤A)−1A⊤y.

• If A has full column rank, i.e., m ≥ n = Rank(A), then A⊤A is invertible and N (A) = {0}.
In this case, x⋆ = A†y is the unique LS solution.

5.5 Ridge Regression
• A regularized LS problem: minx∈Rn ∥Ax− y∥22 + α∥x∥22 where α is a non-negative scalar.

• The matrix A⊤A+ αIn is invertible, and the unique solution to the ridge regression problem is
x⋆ = (A⊤A+ αIn)

−1A⊤y.

6 Low-Rank Matrix Approximation
Given a matrix A ∈ Rm×n, consider the problem of finding a low-rank matrix B ∈ Rm×n that best approximates A.

• This problem can be formulated as minB∈Rm×n ∥A−B∥2 or F subject to Rank(B) ≤ k.

• Eckart-Young-Mirsky theorem:

– For a given k ≤ min(m,n), define Ak :=
∑k

i=1 σiu
(i)v(i)⊤ constructed with the top k singular values of

A and the corresponding left/right singular vectors. Ak has rank at most k. Intuitively, we “chop off” the
smaller singular values starting from the k + 1-th largest.

– B = Ak is an optimal solution to both optimization problems (Frobenius or ℓ2-induced norm).

– Suppose that k < Rank(A). The optimal solution is unique if and only if σk ̸= σk+1, i.e., the k-th largest
singular value of A is not equal to the k + 1.

• The relative Frobenius norm approximation error ek :=
∥A−Ak∥2

F

∥A∥2
F

is equal to σ2
k+1+...+σ2

r

σ2
1+...+σ2

r
, where r = Rank(A).

• The relative ℓ2-induced norm approximation error ∥A−Ak∥2

∥A∥2
is equal to σk+1

σ1
.
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