
EECS 127/227A – Final Review Summary
This note was summarized by Yatong Bai and Sam Pfrommer from UC Berkeley’s Fall 2024 EECS 127/227A

lecture notes created by Somayeh Sojoudi.

1 Linear Algebra – Vectors

1.1 Vector Space, Subspace, Affine Set, and Basis
• Rn is the space of vectors with n elements.

• Vectors x(1), . . . , xm ∈ Rn are linearly dependent if there is a non-trivial linear combination
∑

i αix
(i) which

is the zero vector. Otherwise, they are linearly independent.

• A non-empty set S ⊆ Rn is a subspace if for all x, y ∈ S and scalars α, β we have αx+ βy ∈ S.

• For m vectors x(1), . . . , xm ∈ Rn, we define span(x(1), . . . , xm) as the set of all linear combinations of
x(1), . . . , xm. This set is a subspace.

• A set of vectors x(1), . . . , x(d) is a basis for a subspace S if

– x(1), . . . , x(d) are linearly independent;

– For all x ∈ S, there exist scalars α1, . . . , αd such that x =
∑

i αix
(i).

• For a subspace S , the basis is not unique, but all bases have the same number of vectors, d. This number d is
the dimension of the subspace S.

• A set X ⊆ Rn is affine if there is a subspace S ⊆ Rn and a vector x(0) ∈ Rn such that X = x(0) + S (adding
x(0) to all vectors in S). To prove a set to be affine, first find x(0) and then show that X − x(0) is a subspace.

1.2 Inner Product and Orthogonal Vectors
• For a pair of vectors x, y ∈ Rn, the standard inner product (dot product) is
⟨x, y⟩ = x⊤y = y⊤x = x1y1 + · · ·+ xnyn.

• It holds that ⟨x, y⟩ = ∥x∥2∥y∥2 cos(θ), where θ is the angle between x and y.

• Two vectors are orthogonal if ⟨x, y⟩ = 0 (denoted x ⊥ y).

• d vectors x(1), . . . , x(d) are mutually orthogonal if x(i) ⊥ x(j) for all i ̸= j. This guarantees that x(1), . . . , x(d)

are linearly independent.

• We say x(1), . . . , x(d) are orthonormal if they are mutually orthogonal and have norm one.
I.e., ∥x(i)∥22 = ⟨x(i), x(i)⟩ = 1 for all i = 1, . . . , d and ⟨x(i), x(j)⟩ = 0 for all i ̸= j.

1.3 Vector Norms
• A function ∥ · ∥ : Rn → R is a norm if

1. ∥x∥ ≥ 0 for all x ∈ Rn and ∥x∥ = 0 if and only if x = 0;

2. ∥x+ y∥ ≤ ∥x∥+ ∥y∥ for all x, y ∈ Rn;

3. ∥αx∥ = |α|∥x∥ for all α ∈ R,∀x ∈ Rn.

• An ℓp norm, for 1 ≤ p <∞, is of the form ∥x∥p = (|x1|p + · · ·+ |xn|p)1/p.

• We define ∥x∥0 to be the number of non-zero elements in x. This is not a true norm but appears frequently.

• For an arbitrary vector x ∈ Rn, it holds that ∥x∥22 = x⊤x.
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1.4 Linear Functions and Affine Functions
• A function f(x) : Rn → R is linear if f(ax+ by) = af(x) + bf(y) for all x, y ∈ Rn and scalars a, b.

• If f(x) is linear, there exists an a ∈ Rn such that f(x) = a⊤x.

• A function f(x) is affine if f(x)− f(0) is linear. This means f(x) = a⊤x+ b for some a ∈ Rn and b ∈ R.

1.5 Hyperplanes
• A hyperplane in Rn is a (n − 1) dimensional affine set, can be written as H = {z ∈ Rn | a⊤z = b} for a

non-zero vector a ∈ Rn and scalar b.

• a is called the normal vector of the hyperplane. I.e., for any two vectors z1, z2 ∈ H , we have that a ⊥ (z1−z2).

• Hyperplanes divide Rn into half spaces H− = {x | a⊤x ≤ b} and H+ = {x | a⊤x ≥ b}.

1.6 Projections
• Let S be a subspace of a space X . The projection of a point x ∈ X onto S is ΠS(x) = argminy∈S ∥y − x∥.

• The minimizer y⋆ = ΠS(x) exists and is unique. Furthermore, y⋆ = ΠS(x) if and only if (x− y⋆) ⊥ S.
I.e., (x− y⋆) is orthogonal to every vector in S.

• For projection onto an affine space, this condition becomes (x− y⋆) ⊥ (y − y⋆) for all y ∈ S.

– Suppose that y(1), . . . , y(d) form a basis for the affine space S.
We can find y⋆ by solving for the set of equations y⋆ ∈ S and y − y⋆ ⊥ y(i) for i = 1, . . . , d.

• For projection onto a 1-dimensional subspace S = span(v), we have the formula ΠS(x) =
⟨x,v⟩
∥v∥2 v.

• Now generalize projection onto a subspace S = span(x(1), . . . , x(d)), where x(1), . . . , x(d) are an orthonormal
basis: ΠS(x) =

∑
i⟨x, x(i)⟩x(i).

2 Linear Algebra – Matrices

2.1 Range, Nullspace, and Rank
• The range of A is the set of all linear combinations of A’s columns: R(A) = {Ax | x ∈ Rn}.

• R(A) is a subspace, and its dimension is Rank(A), which is equal to the number of linearly independent columns
of A, and equal to the number of linearly independent rows.

• The nullspace of A is N (A) = {x ∈ Rn | Ax = 0}.

• The nullspace is also a subspace. The fundamental theorem of linear algebra relates the null space and the range:

1. N (A) ⊥ R(A⊤);

2. N (A) ⊕ R(A⊤) = Rn, where ⊕ denotes “direct sum”. I.e., any vector in Rn can be decomposed into a
sum of a vector from the null space of A and a vector from the column space of A⊤;

3. dim(N (A)) + Rank(A) = n.

2.2 Eigenvalues and Eigenvectors
• Consider a square matrix A ∈ Rn×n. If there exists a scalar λ and a vector v such that Av = λv, then we say

that λ is an eigenvalue of A and v is the corresponding eigenvector.

• To find the eigenvalues of A, we solve for λ that makes det(A− λI) = 0.
Then, for each eigenvalue λi, we can solve Av(i) = λiv

(i) to find the corresponding eigenvector v(i).
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• If A is rank-deficient (not full rank, i.e., there are linear dependent rows/columns), then its determinant is 0 and
at least one of its eigenvalues is 0.

• AA⊤ and A⊤A share the same non-zero eigenvalues.

• A’s trace (sum of the diagonal entries) is equal to the sum of its eigenvalues.

2.3 Symmetric Matrices and Positive/Negative (Semi)Definite Matrices
• A square matrix A ∈ Rn×n is symmetric if A = A⊤. We denote the set of all n× n symmetric matrices as Sn.

• The eigenvalues of a symmetric matrix are all real.

• A symmetric matrix A ∈ Sn is positive semidefinite (PSD, denoted as A ⪰ 0 or A ≽ 0) if all eigenvalues are
non-negative, i.e., λ1(A), . . . , λn(A) ≥ 0. We denote the set of n× n PSD matrices as Sn+.

• An alternative PSD definition: A matrix A ∈ Sn is PSD if the scalar x⊤Ax is non-negative for all x ∈ Rn.

• Note: showing that all elements of a matrix are non-negative does NOT prove PSD.

• A symmetric matrix A ∈ Sn is positive definite (PD, denoted as A ≻ 0) if all eigenvalues are strictly positive,
i.e., λ1(A), . . . , λn(A) > 0. We denote the set of n× n PD matrices as Sn++.
Alternatively, A is PD if x⊤Ax > 0 for all x ̸= 0.

• An easier way to check whether a matrix is PD without calculating eigenvalues: A symmetric matrix A is PD if
and only if all of its leading principal minors are strictly positive.

• A symmetric matrix A is negative semidefinite (NSD) if λ1(A), . . . , λn(A) ≤ 0 or x⊤Ax ≤ 0 for all x ∈ Rn.

• A symmetric matrix A is negative definite (ND) if λ1(A), . . . , λn(A) < 0 or x⊤Ax < 0 for all x ̸= 0.

• All PD matrices are PSD and all ND matrices are NSD.

• A matrix neither PSD nor NSD is called sign indefinite. It has at least one positive and one negative eigenvalue.

2.4 Orthogonal Matrices
• A square matrix U ∈ Rn×n with columns u(1), . . . , u(n) is called orthogonal if its columns are orthonormal to

each other. I.e., the columns are mutually orthogonal and have norm 1.
I.e., for arbitrary pairs of i, j ∈ {1, . . . , n}, we have ⟨u(i), u(j)⟩ is 1 if i = j and 0 if i ̸= j.

• A matrix U is orthogonal if and only if U⊤U = In, where In denotes the n×n identity matrix. I.e., U⊤ = U−1.

• An identity matrix is orthogonal. It is also diagonal and full-rank.

2.5 Eigenvalue Decomposition and Spectral Theorem
• Consider A ∈ Rm×n with eigenvalues λ1, . . . , λn. Let u(1), . . . , u(n) be arbitrary eigenvectors each associated

with one eigenvalue.

• Assume u(1), . . . , u(n) are linearly independent. Then, A can be decomposed as UΛU−1,
where U =

[
u(1) . . . u(n)

]
and Λ = diag(λ1, . . . , λn). We say A is a diagonalizable matrix.

• If λ1, . . . , λn are all distinct, A is always diagonalizable. If A has repeated eigenvalues, Theorem 3.4 of our
textbook Optimization Model. G.C. Calafiore and L. El Ghaoui explains when linearly independent eigenvectors
exist.

• Spectral theorem: Consider a symmetric matrix A ∈ Sn. For each eigenvalue λi, select an eigenvector u(i) with
length 1 to assemble the matrix U . Then, it holds that A = UΛU⊤, i.e., U is an orthogonal matrix.

• Symmetric matrices are always diagonalizable.
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2.6 Singular Value Decomposition (SVD)
• SVD Theorem: Given an arbitrary (not necessarily square) matrix A ∈ Rm×n, there exist matrices U ∈ Rm×m,
V ∈ Rn×n, and Σ ∈ Rm×n such that:

1. A = UΣV ⊤.

2. U and V are each orthogonal matrices, i.e., U⊤U = Im and V ⊤V = In.

3. Σ is a “rectangular diagonal matrix” in the form of


σ1 0 · · · 0 0 · · · 0
0 σ2 · · · 0 0 · · · 0
...

...
. . .

...
...

. . .
...

0 0 · · · σm 0 · · · 0

 if n ≥ m

and in the form of



σ1 0 · · · 0
0 σ2 · · · 0
...

...
. . .

...
0 0 · · · σn

0 0 · · · 0
...

...
. . .

...
0 0 · · · 0


if n ≤ m, where σ1 ≥ σ2 ≥ · · · ≥ 0.

• σ1, σ2, . . . are called the singular values of A.

• Let r be the number of non-zero singular values of A, i.e., σ1 ≥ σ2 ≥ . . . ≥ σr︸ ︷︷ ︸
non-zero

> σr+1 = σr+2 = . . . = 0.
It holds that r = Rank(A).

• If A is symmetric and PSD, then its eigenvalues and singular values are the same, and its eigenvalue decompo-
sition A = UΛU⊤ is a valid SVD. However, eigenvalues and singular values are different in general.

• Finding SVD by hand:
The non-zero singular values of A are the square root of the non-zero eigenvalues of AA⊤ or A⊤A.
The columns of U (called the left singular vectors) are the eigenvectors of AA⊤.
The columns of V (called the right singular vectors) are the eigenvectors of A⊤A.

• If αA, where α is some non-negative real scalar, is an orthogonal matrix, then one possible SVD for A is
A = In

In
α (αA).

2.7 Matrix Pseudo-Inverse
• The pseudo-inverse (or Moore-Penrose inverse) of a matrix A = UΣV ⊤ is A† = V Σ†U⊤, where

Σ† =



1/σ1 · · · 0 · · · 0 0 · · · 0
...

. . .
...

. . .
...

...
. . .

...
0 · · · 1/σr · · · 0 0 · · · 0
...

. . .
...

. . .
...

...
. . .

...
0 · · · 0 · · · 0 0 · · · 0

 if n ≤ m and Σ† =



1/σ1 · · · 0 · · · 0
...

. . .
...

. . .
...

0 · · · 1/σr · · · 0
...

. . .
...

. . .
...

0 · · · 0 · · · 0
0 · · · 0 · · · 0
...

. . .
...

. . .
...

0 · · · 0 · · · 0


if n ≥ m,

i.e., we take the inverse of the positive singular values and fill the rest with zero.

• If A is invertible, then A† = A−1 and therefore AA† = In. However, AA† does not produce In in general.

• If A ∈ Rm×n has linearly independent rows, i.e., n ≥ m = Rank(A), then A† = A⊤(AA⊤)−1.
If A ∈ Rm×n has linearly independent columns, i.e., m ≥ n = Rank(A), then A† = (A⊤A)−1A⊤.
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2.8 Matrix Norms
Consider a matrix A ∈ Rm×n.

• Frobenius norm: ∥A∥F := ∥vec(A)∥2, where the vector vec(A) ∈ Rmn is a concatenation of all columns of A.
I.e., A frob = (A ** 2).sum().sqrt() with Python-like pseudo code.

• It holds that ∥A∥2F is equal to the sum of the squared singular values of A, i.e., ∥A∥2F =
∑r

i=1 σ
2
i (A).

• ℓp-induced norm: ∥A∥p := maxz∈Rn,z ̸=0
∥Az∥p

∥z∥p
= max∥w∥p=1 ∥Aw∥p.

• One example of the ℓp-induced norm is the spectral norm for p = 2.

– It holds that ∥A∥2 = σ1(A) =
√
λmax(A⊤A), where σ1(A) is the largest singular value of A and

λmax(A
⊤A) is the largest eigenvalue of A⊤A.

3 Set Theory

3.1 Basic Set Theory
• A set S ⊆ Rn is open if for every x ∈ S, there exists ϵ > 0 such that Bϵ(x) ⊂ S, where Bϵ(x) is a ball centered

at x with radius ϵ.

• A set S ⊆ Rn is closed if its complement Rn \ S is open.

• A set S ⊆ Rn is bounded if there exists an r > 0 such that S ⊆ Br(0).

• A set is compact if it is closed and bounded.

• Given a set S ⊆ Rn, a point x ∈ S is said to belong to the interior of S is we can draw a ball in Rn centered at
x and of non-zero radius that belongs to S. The interior is denoted as int S.

• The closure of a set is defined as:

cls(S) =
{
z ∈ Rn

∣∣∣ z = lim
k→∞

x(k) where x(k) ∈ S, ∀k
}

• Boundary of a set is ∂S = cls(S) \ int(S).

3.2 Affine Sets, Convex Sets, Dimension, and Relative Interior

• Affine combination of x1, . . . , xk ∈ Rn:
{∑k

i=1 αixi

∣∣∣ ∑k
i=1 αi = 1

}
.

• Convex combination x1, . . . , xk ∈ Rn:
{∑k

i=1 αixi

∣∣∣ ∑k
i=1 αi = 1, αi ≥ 0, ∀i

}
.

• A set S is affine if for x, y ∈ S and t ∈ R, the affine combination tx+ (1− t)y is in S (also recall that Section
1.1 introduced affine sets based on subspaces).

– A hyperplane is an affine set, but a half-space is not.

• A set S is convex if for all x, y ∈ S and t ∈ [0, 1], the convex combination tx+ (1− t)y is in S.

– A polyhedron
{
x
∣∣ a⊤i x ≤ bi, c

⊤
j x = d, ∀i, j

}
is a convex set.

– Norm balls and half-spaces are convex.

– The set of PD matrices is convex, and the set of PSD matrices is also convex.

• The affine hull of a set is the smallest affine set containing the set. It is the set of affine combinations of any k
points in the set.
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• The convex hull of a set is the smallest convex set containing the set. It is the set of convex combinations of any
k points in the set.

• Operations that preserve set convexity:

– The intersection of convex sets is convex (note that the union of convex sets may not be convex).
– Affine transformation: consider a convex set S and an affine function f : Rn → Rm. The set S̄ := {f(x) :
x ∈ S} is convex.

– Projections of a convex set are convex.

• Dimension of a set S ⊆ Rn:

1. If S is a subspace, dimension is minimum number of spanning vectors.
2. If S is affine, then S = x0 + V , where V is a subspace, and the dimension of S is the dimension of V .
3. If S is convex, dimension of S is defined as the dimension of the affine hull of S.

• Given a convex set S ⊆ Rn, a point x ∈ S is said to belong to the relative interior of S is we can draw a ball
in the affine hull of S centered at x and of non-zero radius that belongs to S . The relative interior is denoted as
relint S.

3.3 Separating Hyperplane
• Supporting hyperplane theorem: for a convex set C and a boundary point z ∈ ∂C, we can always find a

supporting hyperplane H = {x ∈ Rn | a⊤x = b} which is defined as satisfying:

1. z ∈ H

2. C ⊆ H−, where H− = {x ∈ Rn | a⊤x ≤ b}

• Separating hyperplane: for two convex sets C1, C2 ⊆ Rn, a hyperplane H = {x ∈ Rn | a⊤x = b} is said to
separate C1 and C2 if

1. C1 ⊆ H−, where H− = {x | a⊤x ≤ b},
2. C2 ⊆ H+, where H− = {x | a⊤x ≥ b}.

If H ∩ C1 = H ∩ C2 = ∅, then H strictly separates C1 and C2.

• Separating hyperplane theorem: assume C1, C2 are convex. Then we have two statements

1. if C1 ∩ C2 = ∅, then a separating hyperplane exists.
2. if C1 ∩ C2 = ∅, C1 and C2 are closed, and either C1 or C2 are bounded, then a strictly separating

hyperplane exists.

4 Optimization Problems

4.1 Standard Form and Basic Properties
• Consider functions fi : Rn 7→ R for i = 0, . . . , n. The standard form of optimization problems is

min
x∈Rn

f0(x) subject to fi(x) ≤ 0, ∀i = 1, . . . ,m. (1)

• Equality constraints can be converted into inequality constraints.
For some function h : Rn 7→ R, it holds that h(x) = 0 ⇐⇒ h(x) ≤ 0 and− h(x) ≤ 0.

• Consider the optimization problem (1). A point y ∈ Rn is called feasible if fi(y) ≤ 0 for all i ∈ 1, . . . ,m.
Furthermore, the feasible set X is the set of all feasible points: X = {x ∈ Rn | fi(x) ≤ 0, ∀i ∈ 1, . . . ,m}.

• A point x⋆ ∈ Rn is a global minimum if f0(x⋆) ≤ f0(x) for all x ∈ X .

• Suppose that some x is the optimal solution to minx f(x) where f(x) is an arbitrary function, then it is also
optimal for maxx−f(x) and minx αf(x), where α > 0 is any positive scalar.
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4.2 Optimization Problem Solution Types
• Infeasible: There is no input that satisfies all the constraints. E.g., we have constraints x > 1 and x < 0.

• Unbounded: The optimal objective value of the minimization problem is −∞. E.g., minimize x without con-
straints.

• Unattainable: There is no finite solution. E.g., minimize 1
x subject to x > 0 (we can always improve the solution

by increasing x).

• Tractable: There is an algorithm to solve it efficiently (polynomial time). Otherwise, the problem is intractable.

• For minimization problems, the optimal objective value is +∞ if infeasible, −∞ if unbounded from below, and
finite otherwise (x⋆ may or may not be attainable). Maximization problems see the opposite.

4.3 Coercive Functions and Finite Solutions
• Optimization problems might not have a finite solution (e.g., minx e

x).

• Need a definition: a function f : Rn → R is coercive if lim∥x∥→∞ f(x) =∞.

– Note that f(x) must tend to +∞ along all directions when ∥x∥ → ∞ to be coercive.

– Conversely, to prove a function is not coercive, we just need to find one direction along which f(x) does
not go to +∞ when ∥x∥ → ∞.

• Theorem (unconstrained): consider f : Rn → R with domain Rn (either convex or non-convex). Then if f is
continuous and coercive, min f(x) has a finite solution.

• Theorem (constrained):

1. Consider min f(x) subject to x ∈ S.
Suppose that f (convex or non-convex but with domain Rn) is coercive and continuous.
If S (convex or non-convex) is closed, the optimization problem has a finite solution.

2. Consider the optimization problem

min f0(x) subject to fi(x) ≤ 0 i = 1, . . . ,m (2)
hj(x) = 0 j = 1, . . . , k,

where f0, fi’s, and hj’s are arbitrary but continuous with domain Rn. Then if f0 is coercive, the optimiza-
tion has a finite solution.

• What if we don’t have coerciveness? Then there is an alternative theorem.

• Weierstrass theorem: consider min f(x) s.t. x ∈ S, where f : Rn → R is continuous. If S is compact, then the
optimization has a finite solution.

– So for an optimization of the form (2), as long as f0 is continuous and the feasible set is bounded, we have
a finite solution.

4.4 Convex Functions
• A function f : Rn → R is convex if and only if its domain is a convex set and f(αx + (1 − α)y) ≤ αf(x) +
(1− α)f(y) for all x, y ∈ domf and α ∈ [0, 1].

– This is the zeroth-order condition for convexity.

– Geometric intuition: the graph of the function must entirely lie below the line segment that connects two
arbitrary points on the graph.

– Replacing ≤ with < gives the definition of strict convexity.
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– Thus, the set defined by {x : f(x) ≤ 0}, where f is a convex function, is a convex set.

• First-order convexity condition: f(y)+∇f(y)⊤(x−y) ≤ f(x) for all x, y ∈ domf (replace with < for strict
convexity).

– Geometric intuition: the graph of the function must entirely lie above the tangent line at an arbitrary point
on the graph.

• Second-order convexity condition: f is convex if and only if∇2f(x) ⪰ 0 for all x ∈ domf .

– If ∇2f(x) ≻ 0 for all x ∈ domf , then f is strictly convex.
The reverse direction may not hold (e.g., f(x) = x4).

– Geometric intuition: the graph of the function must be “bowl-shaped” everywhere.

• Some example convex functions:

– f(x) = eax.

– f(x) = xa where a ≥ 1 or a ≤ 0 on R++.

– f(x) = − log(x) on R++.

– Any ℓp form function f(x) = ∥x∥p.

– Quadratic functions f(x) = x⊤Px + q⊤x + r, where P is symmetric and P ⪰ 0. If P ≻ 0, f is strictly
convex.

• A function f is called concave if −f is convex.

• Affine functions are simultaneously convex and concave.

• Convexity does not imply continuity.

– Example: consider an end point x̃ of domf . f can still be convex if it “jumps up” at x̃.

– The discontinuity should happen only on the boundaries.

• Operations that produce convex functions:

– The point-wise maximum of a set of convex functions is convex.
The point-wise minimum of a set of concave functions is concave.

– A summation of convex functions f(x) :=
∑k

i=1 αifi(x) for ai ≥ 0 is convex if fi is convex for all i.

– If f(x) is convex, then the affine transformation g(x) = f(Ax+ b) is also convex.

– If f(x) is convex and g(x) is convex and non-decreasing, then the composite function g ◦ f(x) is convex.

– Compositions of convex functions are not convex in general.

4.5 Convex Optimization Problems
• Consider an optimization problem minx f(x) subject to x ∈ X . This problem is convex when

– f is a convex function (see Section 4.4);

– X is a convex set (see Section 3.2).

• Consider an optimization problem minx f(x) subject to gi(x) ≤ 0 for all i and hj(x) = 0 for all j.
This problem is convex when

– f is a convex function;

– gi is a convex function for each i;

– hj is an affine function for each j.

• For a convex optimization problem:
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– All local solutions are global.
– The feasible set is a convex set.
– The set of all global minima is a convex set.
– If the objective is strictly convex, then there is either no solution or a unique solution.

4.6 Linear Programming (LP)
• Linear program can be written as:

min
x

a⊤0 x subject to a⊤i x− bi = 0 i = 1, . . . ,m,

c⊤j x− dj ≤ 0 j = 1, . . . , k.

• Rewritten in matrix form:

min
x

a⊤0 x subject to Ax = b, Cx ≤ d. (3)

• Rewritten in standard form:

min
x

a⊤0 x subject to Ax = b, x ≥ 0. (4)

– If an LP is reformulated from the form (3) into the standard form (4), A and b in the standard form can be
different from the ones the original form.

– To convert an affine inequality constraint Cx ≤ d into the standard form, we can introduce a slack variable
s (same shape as d) and rewrite the constraint as Cx+ s = d and s ≥ 0.

– The constraint x ≥ 0 must apply to all optimization variables. If some variables are not constrained to be
non-negative in the original problem (say xi is one of such variables), we can “split” it into xi+ ≥ 0 and
xi− ≥ 0 and represent xi as xi+ − xi−.

• Algorithms to solve LPs:

– Simplex: start at an arbitrary vertex and repeatedly go to a neighbor vertex with lower objective value.
– Interior point: start in the interior of polyhedron and move towards optimal solution (stays in the interior

as opposed to moving on the boundary).

4.6.1 LP Solutions are at Feasible Set Vertices

• Definition: for a convex set S, a point y ∈ S is an extreme point if there do not exists points u, v ∈ S such that
y = αu+ (1− α)v for some 0 < α < 1.

– Extreme points of a polyhedron are called vertices.

• Theorem: assume LP has a solution. Then one of its feasible set vertices is a solution (could have other solutions
as well).

• Theorem: if an LP’s feasible set is bounded, then a solution exists.

4.6.2 Finding All Vertices

Consider a feasible set for x defined by Ax = b and x ≥ 0, where x ∈ Rn, A ∈ Rm×n, and b ∈ Rm. Assume that
m ≤ n, i.e., A is wide.

An algorithm that finds all vertices of the feasible set is as follows.

• Find all possible combinations of m columns of A and denote the resulting square sub-matrices formed by these
columns as Asub

i ∈ Rm×m for i = 1, . . . ,
(
n
m

)
, where

(
n
m

)
denotes n-choose-m and is equal to n!

m!(n−m)! .

• Then, the number of vertices is the number of Asub
i matrices that satisfies

1. Asub
i is invertible;

2. The solution z⋆ to the linear system Asub
i z = b is feasible (i.e., non-negative).
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4.6.3 Converting to LP via Epigraph Formulation

Sometimes, can convert an optimization problem into an LP via an epigraph formulation.

• Start with general optimization problem where S is some feasible set:

min
x∈Rn

f(x) subject to x ∈ S.

• Reformulate using a slack variable t:

min
x∈Rn,t∈R

t subject to x ∈ S, f(x) ≤ t.

• For example, minx∈Rn ∥x∥∞ subject to x ∈ S
can be converted to minx∈Rn,t∈R t subject to x ∈ S and ∥x∥∞ ≤ t,
where ∥x∥∞ ≤ t ⇐⇒ |xi| ≤ t for all i.

4.7 Quadratic Programming (QP)
• QP includes a quadratic term in the objective, where P0 ⪰ 0:

min
x∈Rn

x⊤P0x+ q⊤0 x+ r0 subject to Ax = b, Cx ≤ d.

4.8 Quadratically Constrained Quadratic Program (QCQP)
• A QCQP can be written in the form of

min
x∈Rn

x⊤P0x+ q⊤0 x+ r0 subject to Ax = b,

x⊤Pjx+ q⊤j x+ rj ≤ 0 for j = 1, . . . , k,

where Pj ⪰ 0 for j = 0, . . . , k.

• Hierarchy of optimization problems: LP ⊂ QP ⊂ QCQP ⊂ convex optimization.

4.9 Convex Relaxations
• Consider optimization problem with f(x) convex but S non-convex:

min
x∈Rn

f(x) subject to x ∈ S

• If we replace S with a convex S̃ such that S ⊂ S̃, we get a convex relaxation:

min
x∈Rn

f(x) subject to x ∈ S̃

• Let x∗ and x̃ be global minima of the original and relaxed optimizations, respectively. Then

– f(x̃) ≤ f(x∗)

– If x̃ ∈ S, then x̃ is a global min for original optimization problem.
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4.10 Integer Programming (IP)
• An IP is just an LP with a constraint that all elements of x are integers:

min
x

a⊤0 x subject to Ax = b,

x ≥ 0,

xi are integers for i = 1, . . . , n.

• IPs are non-convex!

• Can form a convex relaxation by dropping the integer constraint.

– Let P1 be the above IP, and let P2 be the corresponding relaxed LP dropping the integer constraint.
– Theorem: if all vertices of the feasible set of P2 are integral, then the convex relaxation is exact, and the

optimal objectives of P1 and P2 are equal.
– This is the case for assignment / transport problems (see Lecture 19)!

5 Optimality Conditions

5.1 Gradient and Hessian
Consider a function f(x) : Rn 7→ R and assume f(x) is twice continuously differentiable. Let xi denote the i-th entry
of x for i = 1, . . . , n.

• The gradient is an n-dimensional vector∇f(x) :=
(

∂f
∂x1

, ∂f
∂x2

, . . . , ∂f
∂xn

)
.

• The Hessian is an n× n symmetric matrix∇2f(x) :=


∂2f

∂x1∂x1

∂2f
∂x1∂x2

· · · ∂2f
∂x1∂xn

∂2f
∂x2∂x1

∂2f
∂x2∂x2

· · · ∂2f
∂x2∂xn

...
...

. . .
...

∂2f
∂xn∂x1

∂2f
∂xn∂x2

· · · ∂2f
∂xn∂xn

.

• If n = 1, then the gradient is the first-order derivative and the Hessian is the second-order derivative.

• Suppose that f(x) is quadratic, i.e., f(x) = x⊤Px + q⊤x + r for some P ∈ Sn, q ∈ Rn, and r ∈ R. Then, it
holds that∇f(x) = 2Px+ q and∇2f(x) = 2P .

• Gradient chain rule: Consider functions f : Rm → R and g : Rn → Rm. Define ϕ(x) := f(g(x)). Then
∇ϕ(x)︸ ︷︷ ︸

n-dimensional vector

=
[
∇g1(x) . . . ∇gm(x)

]︸ ︷︷ ︸
n×m matrix

× ∇f(z)|z=g(x)︸ ︷︷ ︸
m-dimensional vector

.

• Taylor series approximation: given a function f(x) : Rn → R that is differentiable at x0 ∈ Rn, it can be
approximated by an affine function in a neighborhood of x0:

f(x) = f(x0) +∇f(x0)
⊤(x− x0) + ϵ(x),

where ϵ(x) goes to zero faster than first order, i.e., limx→x0

ϵ(x)
∥x−x0∥ = 0.

– So, to the first order we have the approximation: f(x) ≈ f(x0) +∇f(x0)
⊤(x− x0).

5.2 Optimality Conditions for Unconstrained Optimization Problems
Consider the optimization problem minx∈Rn f(x), where f is differentiable.

• First-order necessary condition: If x⋆ is a local minimum, then∇f(x⋆) = 0.

• Suppose that ∇2f(x) ⪰ 0 for all x ∈ Rn, i.e., the problem is convex. Then,

– All local minima are global minima.
– x⋆ is a global minimum (and a local minimum) if and only if∇f(x⋆) = 0.
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5.3 Slater’s Condition
Slater’s condition is a widely used regularity condition.

Consider a convex problem minx f0(x) subject to fi(x) = 0 for i = 1, . . . , k and hj(x) ≤ 0 for j = 1, . . . ,m.
Denote the intersection of each fi and each hj’s domain as D.

• Slater’s condition holds if there exists a point y ∈ relint D such that

– fi(y) = 0 for i = 1, . . . , k.

– hj(y) ≤ 0 for all affine hj .

– hj(y) < 0 for all non-affine fj .

• y is not unique in general.

• When there are no constraints, Slater’s condition holds by convention.

• When all constraints are affine, e.g., LP or QP, Slater’s condition is equivalent to feasibility.
However, Slater’s condition is stricter than feasibility in general.

5.4 Optimality Conditions for Constrained Optimization Problems
Again, consider the optimization problem

min
x

f0(x) subject to fi(x) = 0, i = 1, . . . , k,

hj(x) ≤ 0, j = 1, . . . ,m.

Denote the dual variables associated with the equality constraints as µ1, . . . , µk. Similarly, denote the dual variables
associated with the inequality constraints as λ1, . . . , λm. The Lagrangian of this problem is then

L(x, λ, µ) := f(x) +

k∑
i=1

µifi(x) +

m∑
j=1

λjhj(x).

• First-Order Necessary Condition (FOC): If x⋆ is a regular point and a local minimum, then there exist La-
grangian multipliers λ⋆

1, . . . , λ
⋆
m and µ⋆

1, . . . , µ
⋆
l that makes the following holds true:

1. Primal Feasibility: fi(x⋆) = 0 for all i = 1, . . . , k and hj(x
⋆) ≤ 0 for all j = 1, . . . ,m;

2. Dual Feasibility: λ⋆
j ≥ 0 for all j = 1, . . .m;

3. Lagrangian Stationarity: ∇f(x⋆) +
∑k

i=1 µ
⋆
i∇fi(x⋆) +

∑m
j=1 λ

⋆
j∇hj(x

⋆) = 0;

4. Complementary Slackness: λ⋆
j · hj(x

⋆) = 0 for all j = 1, . . .m.

These conditions are called the Karush–Kuhn–Tucker (KKT) conditions.

• For convex optimization problems, the KKT conditions are sufficient can be used to find global optima.

• Consider a quadratic optimization with equality constraints in the form of minx∈Rn x⊤P0x+ q⊤0 x+ r0 subject
to Ax = b where P0 ∈ Sn+, A ∈ Rm×n, q0 ∈ Rn, and r0 ∈ R.

Suppose that Slater’s condition holds, i.e., Ax = b admits one or more solutions. Then, the optimal primal-dual

solution (x⋆, µ⋆) satisfies
[
A 0m×m

2P0 A⊤

] [
x⋆

µ⋆

]
=

[
b
−q0

]
.
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6 Linear Systems, Least Squares, and Regression

6.1 Solving Linear Systems
Consider solving a system of linear equations Ax = y.

• Ax = y has a unique solution if and only if y ∈ R(A) and N (A) = {0}.

• If A’s nullspace satisfies N (A) ̸= {0}, any solution x⋆ produces a space of solutions x⋆ + z where z ∈ N (A).

• Tall matrix: if A ∈ Rm×n, where m > n, then we have an overdetermined case, and there is likely no solution
unless we are lucky and y ∈ R(A).

• Fat matrix: now assume n > m, and our rows are linearly independent. Now we have an underdetermined case,
and the solution space is x̄+N (A) where x̄ is an arbitrary solution.
For many applications, the “best” solution is the one with minimum norm:

min
x∈Rn

∥x∥ subject to Ax = y.

The minimum-norm solution can be derived as x⋆ = A⊤(AA⊤)−1y = A†y.

• If A is square and full-rank (invertible), we can solve directly x = A−1y.

6.2 Least Squares (LS)
What if we are in the overdetermined case and y is not in the range of A? We need to minimize how much we violate
the equation Ax = y, instead of solving it exactly.

• Given a matrix A ∈ Rm×n and a vector y ∈ Rm, we aim to solve the problem minx∈Rn ∥Ax− y∥2.

• Denote the optimal solution as x⋆. Note that x⋆ also solves minx∈Rn ∥Ax− y∥22.

• The set of solutions for the LS problem is S := {x⋆ | A⊤Ax⋆ = A⊤y}. Proof: optimality conditions.

• It holds that S = A†y +N (A), where A† is the pseudo-inverse of A as defined above.

6.3 Relationships between Least Squares and Projection
• Geometrically, the LS problem finds the projection of y ontoR(A), the range of A.

• The projection result y⋆ := Ax⋆ = ΠR(A)y exists and is unique.

• Theorem on projection: y − y⋆ ⊥ R(A). I.e., ⟨y − y⋆, v⟩ = 0 for all v ∈ R(A).

• We can find y⋆ by solving for the vector that simultaneously satisfies y⋆ ∈ R(A) and y − y⋆ ⊥ R(A).

6.4 Minimum-Norm Solution to Least Squares
• To find the minimum-norm solution, solve minx∈S ∥x∥2. I.e., minx∈Rn ∥x∥2 subject to A⊤Ax = A⊤y.

• The minimum-norm LS solution is unique and equal to A†y = (A⊤A)−1A⊤y.

• If A has full column rank, i.e., m ≥ n = Rank(A), then A⊤A is invertible and N (A) = {0}.
In this case, x⋆ = A†y is the unique LS solution.

6.5 Ridge Regression
• An ℓ2-regularized LS problem: minx∈Rn ∥Ax− y∥22 + α∥x∥22 where α is a non-negative scalar.

• The matrix A⊤A+ αIn is invertible, and the unique solution to the ridge regression problem is
x⋆ = (A⊤A+ αIn)

−1A⊤y.
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6.6 Sparsity and LASSO Regression
• x ∈ Rn is called sparse if many of its entries are zero. Otherwise it is called dense.

• The number of non-zero entries of x is called its cardinality, denoted as ∥x∥0. When all entries of x are within
[−1, 1], it holds that ∥x∥1 ≤ ∥x∥0.

• LASSO is an ℓ1-regularized LS problem that promotes solution sparsity:

min
x∈Rn

∥Ax− y∥22 + α∥x∥1,

where α is a non-negative scalar.

• LASSO’s objective function is not always differentiable. However, it can be reformulated as a QP via the
epigraph method:

min
x,t∈Rn

x⊤P0x+ q⊤0 x+ r0 + α

n∑
i=1

ti subject to − ti ≤ xi ≤ ti for i = 1, . . . , n,

where P0 ∈ Sn+, q0 ∈ Rn, and r0 ∈ R are expressions of A and y.

• x⋆ is a solution to LASSO if and only if 2P0x
⋆ + q0 + λ⋆ = 0, where each entry of λ⋆ satisfies:

λ⋆
i = α if x⋆

i ≥ 0, λ⋆
i = −α if x⋆

i ≤ 0, and λ⋆
i ∈ [−α, α] if x⋆

i = 0.
Furthermore, it holds that |x⋆

i | = t⋆i for all i.

6.7 Sensitivity Analysis – Linear Systems
• Consider system of linear equations with A ∈ Rn×n invertible and y ∈ Rn given; we want to find x : Ax = y.

• Due to invertibility solution is given by A−1y.

• What if y changes to y +∆y due to measurement noise?

• Consider solution change to x+∆x:

A(x+∆x) = y +∆y and Ax = y =⇒ ∆x = A−1∆y.

• Lemma: for matrix B and vector y: ∥By∥2 ≤ ∥B∥2∥y∥2

• So we have ∥∆x∥2 ≤ ∥A−1∥2∥∆y∥2 and ∥y∥2 ≤ ∥A∥2∥x∥2.

• Combining these two yields that
∥∆x∥2
∥x∥2

≤ ∥A∥2∥A−1∥2
∥∆y∥2
∥y∥2

.

• Define condition number κ(A) = ∥A∥2∥A−1∥2.

• Theorem: the relative change in x with regard to a relative change in y, when solving y = Ax for A invertible,
is given by

∥∆x∥2
∥x∥2

≤ κ(A)
∥∆y∥2
∥y∥2

.

• Recall that ∥A∥2 = σ1 is the largest singular value and ∥A−1∥2 = 1
σn

is the largest singular value of A−1.

• If κ(A) is close to 1, then A is called well conditioned; if κ(A) is large, then A is ill conditioned.

• Similar bound if we perturb A to A+∆A:

∥∆x∥2
∥x∥2

≤ κ(A)
∥∆A∥2
∥A∥2

.

© EECS 127 Fall 2024. Somayeh Sojoudi. This content is protected and may not be shared, uploaded, or distributed. 14



6.8 Sensitivity Analysis – Least Squares
• Let’s consider least-square problem minx ∥Ax− y∥2, where y is a measurement vector with noise.

• How does perturbing y to y +∆y affect solutions?

• Recall we can define an ellipse in two equivalent forms:

E = {x ∈ Rn | x = By, ∥y∥2 ≤ 1};
E = {x ∈ Rn | x⊤P−1x ≤ 1} where P = BB⊤ is PSD.

– Let v1, . . . , vn be eigenvectors of P with associated eigenvalues λ1, . . . , λn. The the ellipse has semi-axes
is the directions v1, . . . , vn with lengths

√
λ1, . . . ,

√
λn.

• Recall that x∗ = A†y solves least squares; consider x∗ +∆x = A†(y +∆y).

• Theorem: for an uncertainty ball on the measurement ∥∆y∥ ≤ 1, we get an ellipsoidal uncertainty set on the
solution changes:

E = {∆x ∈ Rn | ∆x = A†∆y, ∥∆y∥ ≤ 1}.

• E is an ellipse with semi-axes v1, . . . , vn and lengths 1
σ1
, . . . , 1

σr
, 0, . . . , 0 from the SVD A = UΣV ⊤

(this is because A = UΣV ⊤ =⇒ A† = V Σ†U⊤).

7 Duality
As in Section 5.4, Consider the (potentially non-convex) optimization problem

min
x

f0(x) subject to fi(x) = 0, i = 1, . . . , k,

hj(x) ≤ 0, j = 1, . . . ,m.

Denote the global optimal solution to this problem as x⋆. Also denote the dual variables associated with the equality
constraints as µ1, . . . , µk. Similarly, denote the dual variables associated with the inequality constraints as λ1, . . . , λm.

Once again, the Lagrangian of this problem is

L(x, λ, µ) := f(x) +

k∑
i=1

µifi(x) +

m∑
j=1

λjhj(x).

7.1 Weak Duality
• In the context of duality, the original problem is called the primal problem. We call its optimal objective
p⋆ := f0(x

⋆) the primal solution.

• Consider arbitrary µ ∈ Rk and λ ∈ Rm where λ ≥ 0. It holds that minx L(x, λ, µ) ≤ p⋆.

• Hence, to find a meaningful lower bound to p⋆, we can solve

max
µ∈Rk,λ∈Rm

min
x

L(x, λ, µ) subject to λ ≥ 0. (5)

• We define d(λ, µ) := minx L(x, λ, µ) as the dual function.

We can then reformulate the lower bound optimization problem (5) as the maximization problem

d⋆ := max
µ∈Rk,λ∈Rm

d(λ, µ) subject to λ ≥ 0, (6)

which we refer to as the dual problem. Its optimal objective d⋆ is called the dual solution.
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• It holds that d⋆ ≤ p⋆. The value of p⋆ − d⋆ is called the duality gap.

• Since d(λ, µ) is a point-wise minimum of affine functions, it is concave no matter whether the primal problem
is convex or not, and therefore (6) is always a convex optimization problem.

• Hence, leveraging weak duality, we can use convex optimization to obtain a lower bound to a hard, potentially
non-convex problem.

7.2 Strong Duality
• If it holds that p⋆ = d⋆, i.e. duality gap is zero, then strong duality holds.

• If the primal problem is convex and Slater’s condition holds, then

– Strong duality holds.
– The KKT conditions of the primal problem simultaneously solve the primal problem and the dual problem.

I.e., x⋆ solves the primal problem and (λ⋆, µ⋆) solves the dual problem.
– If x⋆ is an arbitrary optimal solution to the primal problem and (λ⋆, µ⋆) is an arbitrary optimal solution to

the dual problem, then (x⋆, λ⋆, µ⋆) satisfies the primal problem’s KKT conditions.

7.3 Dual of LP and QP
• The dual of an LP is also an LP.

Specifically, for some a0 ∈ Rn, A ∈ Rm×n, b ∈ Rm, C ∈ Rk×n, and d ∈ Rk, consider the LP

min
x∈Rn

a⊤0 x subject to Ax ≤ b, Cx = d.

The dual problem is

max
λ∈Rm,µ∈Rk

−λ⊤b− µ⊤d subject to a0 +A⊤λ+ C⊤µ = 0, λ ≥ 0.

• The dual of a QP is also a QP.
Specifically, for some P0 ∈ Sn++, q0 ∈ Rn, r0 ∈ R, A ∈ Rm×n, b ∈ Rm, C ∈ Rk×n, d ∈ Rk, consider the QP

min
x∈Rn

x⊤P0x+ q⊤0 x+ r0 subject to Ax ≤ b, Cx = d.

The dual problem is

max
λ∈Rm,µ∈Rk

−1

4

(
q0 +A⊤λ+ C⊤µ

)⊤
P−1
0

(
q0 +A⊤λ+ C⊤µ

)
− λ⊤b− u⊤d subject to λ ≥ 0.

• As a special case for QP, consider the problem of finding the minimum-norm solution of a system of equations,
i.e., minx ∥x∥22 subject to Ax = b (A has full row rank). The dual problem is maxµ− 1

4µ
⊤AA⊤µ− µ⊤b.

By Lagrangian stationarity, x⋆ = − 1
2A

⊤µ⋆. Setting the gradient of the dual problem objective to zero gives
µ⋆ = −2(AA⊤)−1b.

7.4 Certificate and Farkas’ Lemma

• Suppose that we want to show that the set

{
x ∈ Rn

∣∣∣∣∣ fi(x) ≤ 0, i = 1, . . . , k
hj(x) = 0, j = 1, . . . ,m

}
is empty.

We can consider the optimization problem minx 0 subject to fi(x) ≤ 0 for all i and hj(x) = 0 for all j.

Next, we find the dual function of this optimization problem d(λ, µ). Suppose that we can find some (λ̂, µ̂) such
that d(λ̂, µ̂) > 0, then the optimal objective of the primal problem is +∞, and hence the set of interest is empty.

• For linear case we have Farkas’ Lemma as following.

Equations Ax = b and x ≥ 0 have no solutions if and only if there is a solution µ to A⊤µ ≤ 0 and b⊤µ < 0.
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8 Constraint Sensitivity Analysis

8.1 Constraint Elimination
• An inequality constraint fi(x) ≤ 0 is called active or binding at x⋆ if fi(x

⋆) = 0. It is called inactive or
non-binding if fi(x⋆) < 0.

• Suppose that x⋆ is an optimal solution to some problem. If we remove all non-binding solutions, then x⋆ is also
a solution to the updated problem. However, the set of optimal solutions may change.

• Suppose that Slater’s condition holds. Due to complementary slackness, the Lagrangian multipliers associated
with the non-binding constraints are zero at x⋆.

8.2 Sensitivity Analysis
We are interested in comparing the optimization problem

min
x

f0(x) subject to fi(x) ≤ 0 for i = 1, . . . , k, hj(x) = 0 for j = 1, . . . ,m (7)

with the problem that has perturbed constraints

min
x

f0(x) subject to fi(x) ≤ vi for i = 1, . . . , k, hj(x) = wj for j = 1, . . . ,m, (8)

where each vi and wj is some scalar.

Denote the optimal objective value of the perturbed problem (8) as p⋆(v, w). The optimal objective of the original
problem (7) is p⋆(0, 0). If the problem is infeasible for some (v, w), then p⋆(v, w) = +∞.

We then have the following properties.

• p⋆(v, w) is a convex function of v and w.

• Assume Slater’s condition holds. If p⋆(v, w) is differentiable at (0, 0), then the Lagrangian multipliers (λ⋆, µ⋆)

of the original problem (7) satisfies λ⋆
i = −∂p⋆(0,0)

∂vi
for all i and µ⋆

j = −∂p⋆(0,0)
∂wj

for all j.

• As a result, it holds that p⋆(v, w) ≈ p⋆(0, 0)−
∑

i λ
⋆
i vi −

∑
j µ

⋆
jwj .

This is the first-order Taylor’s approximation for p⋆(v, w). Given x⋆ (which can be used to compute p⋆(0, 0)),
λ⋆, and µ⋆ of the original unperturbed problem, this approximation can be computed efficiently.

– If λ⋆
i = 0 for some i or µ⋆

j = 0 for some j, then changing the corresponding constraint a little does not
affect the optimal objective. Hence, those constraints can be eliminated.

– If λ⋆
i or µ⋆

j is small, then the optimization problem is not sensitive to the associated constraints.

– If λ⋆
i or µ⋆

j is large, then the optimization problem is highly sensitive to the associated constraints.

9 Numerical Optimization Algorithms

9.1 Gradient and Newton’s Methods
The gradient method is a first-order method, whereas Newton’s method is second-order. They apply to uni-variate and
multi-variate optimization problems. Specifically, consider the problem minx∈Rn f(x).

• Descent algorithm: An iterative algorithm that generates a sequence x(0), x(1), x(2), . . . in a way that
f(x(k+1)) < f(x(k)) for k = 0, 1, 2, . . ..

• Descent direction: At a point x̄ ∈ Rn, ∆x is a descent direction if∇f(x̄)⊤∆x < 0.
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• A family of optimization algorithms can be designed with descent directions: starting from x(0) as the initial
guess, the kth iteration is x(k+1) ← x(k) + s(k)∆x(k) (this is called the update rule), where ∆x(k) is a descent
direction w.r.t. x(k), and s(k) is the step size for the kth iteration.

– Using descent directions guarantees that f(x(k+1)) < f(x(k)) for all small enough step sizes s(k).

• Gradient method: x(k+1) ← x(k) − s(k)∇f(x(k)).
Here, we use −∇f(x(k)), which is a descent direction when∇f(x(k)) ̸= 0, as ∆x(k).

• Newton’s method: x(k+1) ← x(k) − s(k)
(
∇2f(x(k))

)−1∇f(x(k)).

Here, we use −
(
∇2f(x(k))

)−1∇f(x(k)), which is another descent direction when∇f(x(k)) ̸= 0 and
∇2f(x(k)) ≻ 0, as ∆x(k).

• If∇f(x(k)) is zero, then x(k) is a stationary point and we stop the algorithm.

• Why gradient/Newton? The gradient direction minimizes a local first-order Taylor approximation of the objec-
tive function. Similarly, the Newton direction minimizes a second-order approximation, and therefore Newton’s
method can solve certain quadratic problems in one iteration with s(k) = 1.

• Newton’s method converges faster than the gradient method, but each iteration takes longer.

• For an iterative optimization algorithm, if ∥x(k) − x⋆∥ is no greater than some positive threshold at some k,
the algorithm terminates and we accept x(k) as a solution. However, since the true x⋆ is unknown, we need to
estimate ∥x(k) − x⋆∥.

9.2 Analysis on Gradient Algorithm
• Given an initial guess x(0), define the set S := {x ∈ Rn|f(x) ≤ f(x(0))}. It is said that ∇f is Lipschitz

continuous on S with constant L > 0 if ∥∇f(x) − ∇f(y)∥ ≤ L∥x − y∥ for all x, y ∈ S . If f is twice
continuous differentiable and S is compact, then L exists.

• Suppose that L exists. For the gradient algorithm, consider an arbitrary ϵ > 0. If the step size s(0), s(1), . . . are
chosen in the interval (ϵ, 2

L ), then ∥∇f(x(k))∥ → 0 as k →∞.

– This means that the algorithm converges to a stationary point (which can be a local minimum, a local
maximum, or a saddle point).

– If f(x) is convex, then∇f(x⋆) is zero if and only if x⋆ is the global minimum. Hence, gradient algorithm
always converges to a global minimum of a convex function if s(k) is small for all k.

10 Applications

10.1 Low-Rank Matrix Approximation
Given a matrix A ∈ Rm×n, consider the problem of finding a low-rank matrix B ∈ Rm×n that best approximates A.

• This problem can be formulated as minB∈Rm×n ∥A−B∥2 or F subject to Rank(B) ≤ k.

• Eckart-Young-Mirsky theorem:

– For a given k ≤ min(m,n), define Ak :=
∑k

i=1 σiu
(i)v(i)⊤ constructed with the top k singular values of

A and the corresponding left/right singular vectors. Ak has rank at most k. Intuitively, we “chop off” the
smaller singular values starting from the k + 1-th largest.

– B = Ak is an optimal solution to both optimization problems (Frobenius or ℓ2-induced norm).
– Suppose that k < Rank(A). The optimal solution is unique if and only if σk ̸= σk+1, i.e., the k-th largest

singular value of A is not equal to the k + 1.

• The relative Frobenius norm approximation error ek :=
∥A−Ak∥2

F

∥A∥2
F

is equal to σ2
k+1+...+σ2

r

σ2
1+...+σ2

r
, where r = Rank(A).

• The relative ℓ2-induced norm approximation error ∥A−Ak∥2

∥A∥2
is equal to σk+1

σ1
.
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10.2 Principal Component Analysis (PCA)
• Given points x1, . . . , xm, first center data points to x̃1, . . . , x̃m by subtracting

∑m
i=1 x

i.

• Compute the left singular vectors v1, . . . , vm.

• Most variation is along v1 (explains σ2
1/

∑
i σ

2
i ), second most along v2, etc.

10.3 Robust PCA
We aim to decompose Y ∈ Rm×n as the sum of a low-rank matrix X ∈ Rm×n and a sparse (most entries are zero)
matrix Z ∈ Rm×n. To achieve this, we can solve the optimization problem

min
X,Z∈Rm×n

Rank(X) + λ Card(Z) subject to Y = X + Z,

where Card(Z) is the number of non-zero entries in Z and λ > 0 is a regularization coefficient.

The above problem is non-convex. To this end, we can solve the following convex problem as a surrogate:

min
X,Z∈Rm×n

∥X∥⋆ + λ

m∑
i=1

n∑
j=1

|Zij | subject to Y = X + Z.

10.3.1 Video Processing

Consider the problem of identifying moving objects in a video.

• Suppose that the video has q frames, V (1), . . . , V (q), where the (i, j) entry V (k) is the color value of the (i, j)
pixel at frame k for k = 1, . . . , q.

• We compose each frame V (k) into the foreground V
(k)
f (moving objects) and the background V

(k)
b (changes

slowly). Assuming that the moving object occupies a small portion of the video, then V
(k)
f is sparse.

• Now we vectorize each V (k) and concatenate them into a single matrix as Y =
[
vec(V (1)) . . . vec(V (k))

]
.

We can then decompose the known matrix Y as Y = X + Z, where X is low-rank and Z is sparse.

– X takes on the role of
[
vec(V (1)

b ) . . . vec(V (k)
b )

]
.

– Z takes on the role of
[
vec(V (1)

f ) . . . vec(V (k)
f )

]
.

• We can then solve this decomposition via robust PCA.

10.4 Matrix Completion
• Consider a matrix X⋆ = Rm×n whose entries are unknown but is known to be low rank. Assume that we

measure the entries X⋆
ij only when (i, j) belongs to some given set S.

• To estimate X⋆ using the measurements, we can find the lowest-rank X whose (i, j) entries match the measure-
ments by solving for the optimization problem

min
X∈Rm×n

Rank(X) subject to Xij = X⋆
ij , ∀(i, j) ∈ S.

• This problem is non-convex due to the discrete rank function in the objective.
Over the restricted space {X ∈ Rm×n |∥X∥2 ≤ 1}, a convex relaxation is

min
X∈Rm×n

∥X∥∗ subject to Xij = X⋆
ij , ∀(i, j) ∈ S.
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10.5 Compressed Sensing
• Let x⋆ ∈ Rn denote some states of some system. We want to know x⋆ but can only measure b := Ax⋆ ∈ Rm

for some m× n matrix A. When m < n, the linear system is underdetermined.

• Suppose that x⋆ is known to be sparse. Then x⋆ can be estimated via the optimization problem

min
x
∥x∥0 subject to Ax = b.

• This problem is non-convex, but can be approximated with its convex relaxation over the restricted space of
−1 ≤ x ≤ 1:

min
x
∥x∥1 subject to Ax = b,

which can be reformulated as an LP

min
x,t∈Rn

1⊤
n t subject to Ax = b, −t ≤ x ≤ t,

where 1n denotes the n-dimensional all-one column vector.

• Suppose that our measurements are noisy, i.e., b̂ = Ax + w where w is random (often Gaussian). Then, the
problem we should solve is

min
x,w
∥w∥22 + λ∥x∥1 subject to Ax+ w = b,

where λ > 0 is a user-defined balancing constant. This is a constrained LASSO problem that can be reformu-
lated as a QP (see Section 6.6).

10.6 Power Network Identification with Adversarial Sensor Injections
• Power networks can be represented as a graph, where each node ni is a generator or a load and each edge eij

connects node ni to node nj .

• Each node ni has phase θi and each edge eij has a reactance zij ∈ R.

• The power flow on each edge is pij =
θi−θj
zij

.

• Due to the graph structure, pij = −pji. Furthermore, the power at each node ni is pi =
∑

j∈Ni
pij , where Ni is

the set of indices of all nodes nj that are connected to ni via an edge eij .

• We have node measurements p̂i for all i ∈ N̂ where N̂ is the set of measured node indices. Here, Here,
p̂i = pi + wi + vi, where wi is sensor noise (usually random, dense, but small) and vi is potential adversarial
injection (usually large but sparse).

• We also have edge measurements p̂ij for all (i, j) ∈ Ê where Ê is the set of measured edge indices. Here,
p̂ij = pij + wij + vij , where wij is sensor noise and vij is potential adversarial injection.

• We assume that only a small number of nodes and edges are subject to adversarial injection.

• Given the (noisy and potentially adversarially perturbed) sensor measurements, we want to estimate the power
network status (i.e., the true pi and pij). To achieve so, we can solve the LASSO problem

min
w,v,θ

∥w∥22 + λ∥v∥1 subject to p̂i =
∑
j∈Ni

θi − θj
zij

+ wi + vi,

p̂ij =
θi − θj
zij

+ wij + vij ,

θ1 = 0.

Here, each p̂i and each p̂ij is measured, each zij is known, w and v are vectors that contains all wi, wij and
vi, vij respectively, θ is a vector that contains all node phases, and λ > 0 is a hyperparameter that adjusts the
sparsity of the solution.
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