

Efficient and Reliable Optimization for Deep Learning and Media Generation PhD Dissertation Defense Talk

Yatong Bai University of California, Berkeley

My Journey So Far

- 5th-year PhD candidate at UC Berkeley.
- · Advisor: Somayeh Sojoudi.

This Presentation

- \cdot An overview of my PhD research.
- Efficient and reliable discriminative models under input uncertainties.
 - Efficient Convex Optimization for Neural Network (Adversarial) Training.
 - Mixing Classifiers to Alleviate the Accuracy-Robustness Trade-Off.
- Efficient and reliable media generation aligned with human preference.
 - · ConsistencyTTA: Accelerating Diffusion-Based Text-to-Audio Generation.
 - · DRAGON: Optimizing Distributional Rewards Enhances Diffusion Models.
- Summary.

Convex Optimization for Training Neural Nets	Safe Deep Learning – Adversarial Robustness	Diffusion Models – Audio/Music Generation

Convex Optimization for Training Neural Nets

- Convex Training for Two-Layer ReLU Neural Networks
- Convex Adversarial Training for *Robust* Two-Layer ReLU NNs

Safe Deep Learning – Adversarial Robustness Diffusion Models – Audio/Music Generation

Convex Optimization for Training Neural Nets

- Convex Training for Two-Layer ReLU Neural Networks
- Convex Adversarial Training for *Robust* Two-Layer ReLU NNs

Safe Deep Learning – Adversarial Robustness

• LLM Vulnerability Ranking Manipulation for Conversational Search Engines

• Robust Image Classification Tackling the "Accuracy-Robustness Trade-Off"

Diffusion Models – Audio/Music Generation

Convex Optimization for Training Neural Nets

- Convex Training for Two-Layer ReLU Neural Networks
- Convex Adversarial Training for *Robust* Two-Layer ReLU NNs

Safe Deep Learning – Adversarial Robustness

• LLM Vulnerability Ranking Manipulation for Conversational Search Engines

• Robust Image Classification Tackling the "Accuracy-Robustness Trade-Off"

Diffusion Models – Audio/Music Generation

• ConsistencyTTA Accelerating Diffusion-Based Text-to-Audio Generation

• Reward Optimization Optimizing Distributional Rewards Enhances Music Generation

This Presentation

- · An overview of my PhD research.
- · Efficient and reliable discriminative models under input uncertainties.
 - Efficient Convex Optimization for Neural Network Adversarial Training.
 - Mixing Classifiers to Alleviate the Accuracy-Robustness Trade-Off.
- Efficient and reliable media generation aligned with human preference.
 - · ConsistencyTTA: Accelerating Diffusion-Based Text-to-Audio Generation.
 - · DRAGON: Optimizing Distributional Rewards Enhances Diffusion Models.
- Summary.

Challenges of Deep Discriminative Models

Ragged Optimization Landscapes.

Many spurious local minima

Vulnerable to adversarial inputs.

Source: Visualizing the Loss Landscape of Neural Nets

Source: Explaining and Harnessing Adversarial Examples

Robust Classification Background

Geometric interpretation of adversarial examples.

Robust Classification Background

Geometric interpretation of adversarial examples.

Robust classifiers separate perturbation sets.

Nominal Decision Boundary Doesn't Separate l_{∞} Norm Balls Robust Decision Boundary

Madry, A., Makelov, A., Schmidt, L., Tsipras, D., and Vladu, A. Towards deep learning models resistant to adversarial attacks. International Conference on Learning Representations, 2018.

This Presentation

- · An overview of my PhD research.
- · Efficient and reliable discriminative models under input uncertainties.
 - Efficient Convex Optimization for Neural Network (Adversarial) Training.
 - Mixing Classifiers to Alleviate the Accuracy-Robustness Trade-Off.
- Efficient and reliable media generation aligned with human preference.
 - · ConsistencyTTA: Accelerating Diffusion-Based Text-to-Audio Generation.
 - · DRAGON: Optimizing Distributional Rewards Enhances Diffusion Models.
- Summary.

· Background

- · Training neural networks with global optimality has been *intractable*.
- · *Adversarial training* builds robust models by training with adversary.
- · Even more challenging optimization: \min_{θ}

 $\begin{array}{c|c} \mathbf{n}_{\theta} & \max_{\epsilon} & \ell(\theta, x + \epsilon). \\ \text{Adversary finds worst perturbation} \end{array}$

Trainer optimizes network parameters

Robust Decision Boundary

max_e

 $\ell(\theta, x + \epsilon).$

Adversary finds worst perturbation

Trainer optimizes network parameters

· Background

- · Training neural networks with global optimality has been *intractable*.
- · Adversarial training builds robust models by training with adversary.
- · Even more challenging optimization: \min_{θ}

· Convex Training

Original training problem Non-convex, unconstrained **Convex training problem** Convex, constrained

max_e

 $\ell(\theta, x + \epsilon).$

Adversary finds worst perturbation

Trainer optimizes network parameters

· Background

- · Training neural networks with global optimality has been *intractable*.
- · Adversarial training builds robust models by training with adversary.
- · Even more challenging optimization: \min_{θ}

Robust Decision Boundary

Original training problem Non-convex, unconstrained **Convex training problem** Convex, constrained

max_e

 $\ell(\theta, x + \epsilon).$

Adversary finds worst perturbation

Trainer optimizes network parameters

· Background

- · Training neural networks with global optimality has been *intractable*.
- · Adversarial training builds robust models by training with adversary.
- · Even more challenging optimization: \min_{θ}

Robust Decision Boundary

Original training problem Non-convex, unconstrained **Convex training problem** Convex, constrained

scalar-output neural networks 5/35

\cdot Challenges of convex training

- · Problem size is exponential to data dimension.
- Traditional algorithm: interior point method (cubic complexity).

· Challenges of convex training

- · Problem size is exponential to data dimension.
- Traditional algorithm: interior point method (cubic complexity).

\cdot Our solutions

- An approximation with provable relaxation gap, giving probabilistic *global optimality*.
- An *ADMM algorithm* with *quadratic complexity*.
- Complexity: Previous exponential $\mathcal{O}(d^6 (\frac{n}{d})^{^{3d}})$ \downarrow Ours quadratic $\mathcal{O}(n^2 d^2)$.

\cdot Challenges of convex training

- · Problem size is exponential to data dimension.
- Traditional algorithm: interior point method (cubic complexity).

\cdot Our solutions

- An approximation with provable relaxation gap, giving probabilistic *global optimality*.
- An **ADMM algorithm** with **quadratic complexity**.
- Complexity: Previous exponential $\mathcal{O}(d^6 (\frac{n}{d})^{^{3d}})$ \downarrow Ours quadratic $\mathcal{O}(n^2 d^2)$.

- \cdot A convex optimization problem for adversarial training.
 - \cdot Train robust neural networks with *global optimality* (provable upper bound).

- \cdot A convex optimization problem for adversarial training.
 - \cdot Train robust neural networks with *global optimality* (provable upper bound).

- \cdot A convex optimization problem for adversarial training.
 - \cdot Train robust neural networks with *global optimality* (provable upper bound).

Robust Decision Boundary

This Presentation

- · An overview of my PhD research.
- · Efficient and reliable discriminative models under input uncertainties.
 - Efficient Convex Optimization for Neural Network (Adversarial) Training.
 - Mixing Classifiers to Alleviate the Accuracy-Robustness Trade-Off.
- Efficient and reliable media generation aligned with human preference.
 - · ConsistencyTTA: Accelerating Diffusion-Based Text-to-Audio Generation.
 - · DRAGON: Optimizing Distributional Rewards Enhances Diffusion Models.
- Summary.

Accuracy-Robustness Trade-Off

- Robust models often sacrifice "clean accuracy".
 - Clean accuracy: accuracy in natural circumstances (no attack).
 - Robust accuracy: accuracy when subject to attack.

Accuracy-Robustness Trade-Off

- Robust models often sacrifice "clean accuracy".
 - Clean accuracy: accuracy in natural circumstances (no attack).
 - Robust accuracy: accuracy when subject to attack.

Accuracy-Robustness Trade-Off

- Robust models often sacrifice "clean accuracy".
 - Clean accuracy: accuracy in natural circumstances (no attack).
 - Robust accuracy: accuracy when subject to attack.
- · Implications
 - Discourages deploying robust models in real life.
 - · Real-world services are still unsafe!

- With convex training addressing optimization challenges, we now focus on generalization.
- \cdot Our solution to the accuracy-robustness trade-off:
 - Mix the predicted *probabilities* of a robust model and a standard model.

Convert back to logits

$$f(x) \coloneqq \log \left((1 - \alpha) \cdot \sigma \circ g(x) + \alpha \cdot \sigma \circ h(x) \right)$$

$$f(x) \coloneqq \log \left((1 - \alpha) \cdot \sigma \circ g(x) + \alpha \cdot \sigma \circ h(x) \right)$$

$$f(x) \coloneqq \log \left((1 - \alpha) \cdot \sigma \circ g(x) + \alpha \cdot \sigma \circ h(x) \right)$$

$$f(x) \coloneqq \log \left((1 - \alpha) \cdot \sigma \circ g(x) + \alpha \cdot \sigma \circ h(x) \right)$$

$$f(x) \coloneqq \log \left((1 - \alpha) \cdot \sigma \circ g(x) + \alpha \cdot \sigma \circ h(x) \right)$$

$$f(x) \coloneqq \log \left((1 - \alpha) \cdot \sigma \circ g(x) + \alpha \cdot \sigma \circ h(x) \right)$$

$$f(x) \coloneqq \log \left((1 - \alpha) \cdot \sigma \circ g(x) + \alpha \cdot \sigma \circ h(x) \right)$$

$$f(x) \coloneqq \log \left((1 - \alpha) \cdot \sigma \circ g(x) + \alpha \cdot \sigma \circ h(x) \right)$$

$$f(x) \coloneqq \log \left((1 - \alpha) \cdot \sigma \circ g(x) + \alpha \cdot \sigma \circ h(x) \right)$$

$$f(x) \coloneqq \log \left((1 - \alpha) \cdot \sigma \circ g(x) + \alpha \cdot \sigma \circ h(x) \right)$$

$$f(x) \coloneqq \log \left((1 - \alpha) \cdot \sigma \circ g(x) + \alpha \cdot \sigma \circ h(x) \right)$$

$$f(x) \leftarrow \log \left((1 - \alpha) \cdot \sigma \circ g(x) + \alpha \cdot \sigma \circ h(x) \right)$$

$$f(x) \leftarrow \log \left((1 - \alpha) \cdot \sigma \circ g(x) + \alpha \cdot \sigma \circ h(x) \right)$$

• Mixing probability versus logits.

- Mixing probability versus logits.
 - · Logits: unbounded.
 - Can be "arbitrarily wrong".
 - \cdot **Probabilities:** in [0, 1].
 - Damage from non-robustness is contained.
- Mixing probability is better!

Convert back to logits

$$f(x) \coloneqq \log \left(\left(1 - \alpha(x) \right) \cdot \sigma \circ g(x) + \alpha(x) \cdot \sigma \circ h(x) \right)$$

$$Trade-Off$$

$$Accurate Base$$

$$Robust Base$$

$$Parameter \alpha$$

$$Classifier (ABC)$$

$$Classifier (RBC)$$

• Adaptive Smoothing: let α change with x.

· Adaptive Smoothing: let α change with x.

"panda" 57.7% confidence Clean example Small α to favor accurate model

"gibbon" 99.3 % confidence

Adversarial example

Large α to favor robust model

- · Adaptive Smoothing: let α change with x.
 - The *mixing network* $\alpha(x)$: a new neural network component.
 - Train $\alpha(x)$ with strong adversaries that exploits the new structure.

"panda" 57.7% confidence Clean example Small α to favor accurate model

"gibbon" 99.3 % confidence

Adversarial example

Large α to favor robust model

· Why does mixing probabilities improve the trade-off?

Robust models are more confident when correct than when incorrect, even when attacked.

I.e., Orange (attacked correct) is higher than Blue (clean incorrect) in the confidence plot.

· Why does mixing probabilities improve the trade-off?

Robust models are more confident when correct than when incorrect, even when attacked.

• Can we "enlarge" this benign confidence property? Apply non-linear transformation to the robust model logits h(x).

 Mixing with non-linear transformation (MixedNUTS) improves accuracyrobustness balance.

Tackling Accuracy-Robustness Trade-Off (TMLR, SIMODS, L4DC)

 Mixing with non-linear transformation (MixedNUTS) improves accuracyrobustness balance.

- · Also: certified robustness.
- \cdot Mostly training-free.

	Efficiency	Reliability
Convex Training		
Mixing Classifiers		

	Efficiency	Reliability
Convex Training	 Polynomial-time 	 Global optimality guarantee Robustness guarantees w/ adversarial training
Mixing Classifiers		

	Efficiency	Reliability
Convex Training	 Polynomial-time 	 Global optimality guarantee Robustness guarantees w/ adversarial training
Mixing Classifiers	Training-freePlug-and-play	Interpretable formulationRobust models are now practical

	Efficiency	Reliability
Convex Training	 Polynomial-time 	 Global optimality guarantee Robustness guarantees w/ adversarial training
Mixing Classifiers	Training-freePlug-and-play	Interpretable formulationRobust models are now practical

- · So far, we made *discriminative models* more dependable.
 - \cdot Especially when the training data does not cover all scenarios.
- Next, we discuss *generative models*.
 - \cdot A different train-test mismatch; different efficiency and reliability challenges.

This Presentation

- · An overview of my PhD research.
- · Efficient and reliable discriminative models under input uncertainties.
 - Efficient Convex Optimization for Neural Network (Adversarial) Training.
 - Mixing Classifiers to Alleviate the Accuracy-Robustness Trade-Off.

· Efficient and reliable media generation aligned with human preference.

- · ConsistencyTTA: Accelerating Diffusion-Based Text-to-Audio Generation.
- · DRAGON: Optimizing Distributional Rewards Enhances Diffusion Models.
- Summary.

Media Generation

- · Media generation, a recently emerged impactful deep learning area
 - \cdot E.g., audio, music, images, videos.
 - \cdot Models interact with people in a creative way.
 - · Alignment with human need is paramount!

Al-generated cover image for a research project

Media Generation

\cdot Media generation, a recently emerged impactful deep learning area

- \cdot E.g., audio, music, images, videos.
- \cdot Models interact with people in a creative way.
- · Alignment with human need is paramount!

\cdot Audio/music creation

- · Global music industry reached US\$26.2 billion in 2022.
- · Film and video market reached US\$273.35 billion.
- · Amateurs can now become composers/directors!

Al-generated cover image for a research project

Diffusion Model Background

· Diffusion models are one of the most popular approaches to media generation.

 Training
 Minimize ^{Pata} ^{Various} ^{Various} amount of = ^{Various} ^{Noisy} ^{Noisy} ^{data}

 Model inference (de-noise)

Diffusion Model Background

· Diffusion models are one of the most popular approaches to media generation.

· Inference

A Pure Noise

Data

Source: https://developer.nvidia.com/blog/improving-diffusion-models-as-an-alternative-to-gans-part-1

Training Objective Mismatch

• Diffusion models' training objective (de-noising) does not match the target task (creative generation).

Training Objective Mismatch

• Diffusion models' training objective (de-noising) does not match the target task (creative generation).

\cdot Two issues:

- Slow inference (due to iterative inference).
- · Reward misalignment (good denoiser \neq good creator).

This Presentation

- · An overview of my PhD research.
- · Efficient and reliable discriminative models under input uncertainties.
 - Efficient Convex Optimization for Neural Network (Adversarial) Training.
 - Mixing Classifiers to Alleviate the Accuracy-Robustness Trade-Off.
- Efficient and reliable media generation aligned with human preference.
 - · ConsistencyTTA: Accelerating Diffusion-Based Text-to-Audio Generation.
 - · DRAGON: Optimizing Distributional Rewards Enhances Diffusion Models.
- Summary.

• Can we tackle both issues via noniterative inference?

- Can we tackle both issues via noniterative inference?
- Accelerate diffusion-based text-to-audio generation with consistency distillation.
 - \cdot In-the-wild audio (environmental sound).
 - 400x theoretical acceleration.
 - · 72x real-world speed-up.
 - \cdot Minimal change in audio quality.

- Consistency distillation
 - Condensed model capability: same model size, inference iterations decreased to 1.

- Consistency distillation
 - Condensed model capability: same model size, inference iterations decreased to 1.

- Classifier-Free Guidance: inference-time operation outside the denoiser that enhances results.
- · CFG-Aware Distillation:

• Now, our model has *non-iterative inference* and is *end-to-end differentiable*.

- Now, our model has *non-iterative inference* and is *end-to-end differentiable*.
- · We can *fine-tune target task reward functions* to address train-test mismatch.
 - CLAP Score: cosine similarity of a generation and a reference in an embedding space.

ConsistencyTTA Live Demo

 Demo Link <u>https://huggingface.co/spaces/Bai-YT/ConsistencyTTA</u>

This Presentation

- · An overview of my PhD research.
- · Efficient and reliable discriminative models under input uncertainties.
 - Efficient Convex Optimization for Neural Network (Adversarial) Training.
 - Mixing Classifiers to Alleviate the Accuracy-Robustness Trade-Off.
- Efficient and reliable media generation aligned with human preference.
 - · ConsistencyTTA: Accelerating Diffusion-Based Text-to-Audio Generation.
 - · DRAGON: Optimizing Distributional Rewards Enhances Diffusion Models.
- Summary.

Optimizing Distributional Rewards Enhances Diffusion Models

· ConsistencyTTA tackled training objective misalignment with non-iterative inference.

Optimizing Distributional Rewards Enhances Diffusion Models

· ConsistencyTTA tackled training objective misalignment with non-iterative inference.

- · Can we instead make **reward optimization compatible with iterative denoising?**
- · Can we make diffusion media generation more aligned with human preference?

Optimizing Distributional Rewards Enhances Diffusion Models

· ConsistencyTTA tackled training objective misalignment with non-iterative inference.

- · Can we instead make **reward optimization compatible with iterative denoising?**
- · Can we make diffusion media generation more aligned with human preference?

· We propose DRAGON.

An online on-policy reward optimization framework for media creation.
 Compatible with reward functions that evaluate individual examples or distributions.

· Goal:

- Maximize a reward function $r_{dist}: \mathcal{P} \rightarrow \mathbb{R}$ that evaluates **distributions**.
- Per-instance reward special case $r_{\text{dist}}(D_{\theta}) = \mathbb{E}_{X \sim D_{\theta}} r_{\text{instance}}(X).$

\cdot Goal:

• Maximize a reward function $r_{dist}: \mathcal{P} \to \mathbb{R}$ that evaluates **distributions**.

• Per-instance reward special case $r_{\text{dist}}(D_{\theta}) = \mathbb{E}_{X \sim D_{\theta}} r_{\text{instance}}(X).$

\cdot Goal:

• Maximize a reward function $r_{dist}: \mathcal{P} \to \mathbb{R}$ that evaluates **distributions**.

• Per-instance reward special case $r_{\text{dist}}(D_{\theta}) = \mathbb{E}_{X \sim D_{\theta}} r_{\text{instance}}(X).$

\cdot Goal:

• Maximize a reward function $r_{dist}: \mathcal{P} \to \mathbb{R}$ that evaluates **distributions**.

• Per-instance reward special case $r_{\text{dist}}(D_{\theta}) = \mathbb{E}_{X \sim D_{\theta}} r_{\text{instance}}(X).$

· Goal:

• Maximize a reward function $r_{dist}: \mathcal{P} \to \mathbb{R}$ that evaluates **distributions**.

• Per-instance reward special case $r_{\text{dist}}(D_{\theta}) = \mathbb{E}_{X \sim D_{\theta}} r_{\text{instance}}(X).$

DRAGON Workflow

A New Way to Construct Rewards

\cdot Reward construction has been challenging for media generation.

- \cdot Media is perceptive. Hard to use criteria-based rewards like LLM alignment.
- · Hard to gather high-quality large-scale preference annotations.
- · Leveraging DRAGON's versatility, we construct exemplar-based rewards.
 - · Exemplars: A set of high-quality music embeddings.

Match D_{θ} with exemplars

- Instance-to-instance (CLAP score)
- Distribution-to-distribution (FAD)
- Instance-to-distribution (Per-song FAD)

Exemplar

Set
A New Way to Construct Rewards

\cdot Reward construction has been challenging for media generation.

- \cdot Media is perceptive. Hard to use criteria-based rewards like LLM alignment.
- · Hard to gather high-quality large-scale preference annotations.
- · Leveraging DRAGON's versatility, we construct exemplar-based rewards.
 - Exemplars: A set of high-quality *text* (e.g., music captions, via cross-modal embedding spaces).

- · Experiment results on optimizing a text-to-music diffusion model.
 - · Over 20 reward functions, DRAGON achieves an **81.45% win rate** on average.

Human Listening Test

- · DRAGON-vs-Baseline binary comparison test.
 - \cdot 21 raters, each rate 20 random blinded pairs (420 total).

DRAGON Win Rate: 60.95%

Baseline

 Via exemplar sets, DRAGON improves human-perceived quality without human annotated preference dataset.

Generation Examples

29/33

Generation Examples

29/33

This Presentation

- · An overview of my PhD research.
- · Efficient and reliable discriminative models under input uncertainties.
 - Efficient Convex Optimization for Neural Network (Adversarial) Training.
 - Mixing Classifiers to Alleviate the Accuracy-Robustness Trade-Off.
- Efficient and reliable media generation aligned with human preference.
 - · ConsistencyTTA: Accelerating Diffusion-Based Text-to-Audio Generation.
 - · DRAGON: Optimizing Distributional Rewards Enhances Diffusion Models.
- · Summary.

Summary

Diffusion Models – Audio/Music Generation

- Distillation/Acceleration
- Reward Optimization

• Accuracy-Robustness Balance

Convex Optimization for Training Neural Nets

• Convex Training

• Convex Adversarial Training

	Efficiency	Reliability
Convex Training	 Polynomial- time 	 Global optimality guarantee Robustness guarantees w/ adversarial training
Mixing Classifiers	Training-freePlug-and-play	Interpretable formulationRobust models are now practical
Diffusion Distillation		
Distributional Reward		

	Efficiency	Reliability
Convex Training	 Polynomial- time 	 Global optimality guarantee Robustness guarantees w/ adversarial training
Mixing Classifiers	Training-freePlug-and-play	Interpretable formulationRobust models are now practical
Diffusion Distillation	• 400x speedup	 End-to-end optimizes reward functions
Distributional Reward		

	Efficiency	Reliability
Convex Training	 Polynomial- time 	 Global optimality guarantee Robustness guarantees w/ adversarial training
Mixing Classifiers	Training-freePlug-and-play	Interpretable formulationRobust models are now practical
Diffusion Distillation	• 400x speedup	 End-to-end optimizes reward functions
Distributional Reward	 Exemplar- based reward 	 Reward optimization on a distribution level Address the training objective mismatch

• Efficient and Reliable Optimization for Deep Learning and Media Generation in an industry setting.

- · Distillation + reward optimization for diffusion models.
- · Adversarial attack and defense with generative models.
- · Optimizing more fine-grained rewards for media generation (e.g., text adherence).
- Research scientist at the music generation team of **ByteDance**.

Thanks to my collaborators and peers!

Tanmay

Gautam

• Somayeh group:

Samuel

Pfrommer

Ziye

Ma

Somayeh Sojoudi Brendon G Anderson Jingqi Li

Elizabeth Glista Eli Brock Hyunin Lee Jiangyan Ma

· Other research collaborators:

Aerin Kim

Kazuhito Koishida

Dung Tran

)

Trung Dang Mo Zhou Vishal M Patel Nicholas J Bryan

Yixiao

Huang

Dissertation Committee:

Kameshwar Poolla

· And many others!

Publications Presented

- 1. Practical Convex Formulation of Robust One-Hidden-Layer Neural Network Training. Yatong Bai, Tanmay Gautam, Yu Gai, Somayeh Sojoudi, in American Control Conference (ACC), 2022.
- 2. Efficient Global Optimization of Two-Layer ReLU Networks: Adversarial Training and Quadratic-time Algorithms. **Yatong Bai**, Tanmay Gautam, Somayeh Sojoudi, in *SIAM Journal on Mathematics of Data Science (SIMODS)* 5 (2), 446-474, 2023.
- 3. Mixing Classifiers to Alleviate the Accuracy-Robustness Trade-Off. **Yatong Bai**, Brendon G. Anderson, Somayeh Sojoudi, in *Annual Learning for Dynamics & Control Conference (L4DC)*, 2024.
- 4. Improving the Accuracy-Robustness Trade-Off of Classifiers via Adaptive Smoothing. **Yatong Bai**, Brendon G. Anderson, Aerin Kim, Somayeh Sojoudi, in *SIAM Journal on Mathematics of Data Science (SIMODS)* 6 (3), 2024.
- 5. MixedNUTS: Training-Free Accuracy-Robustness Balance via Nonlinearly Mixed Classifiers. Yatong Bai, Mo Zhou, Vishal M. Patel, Somayeh Sojoudi, in *Transactions on Machine Learning Research (TMLR)*, 2024.
- 6. ConsistencyTTA: Accelerating Diffusion-Based Text-to-Audio Generation with Consistency Distillation. **Yatong Bai**, Trung Dang, Dung Tran, Kazuhito Koishida, and Somayeh Sojoudi, in *INTERSPEECH*, 2024.
- 7. DRAGON: Distributional Rewards Optimize Diffusion Generative Models. **Yatong Bai**, Jonah Casebeer, Somayeh Sojoudi, Nicholas J. Bryan, under submission.