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This Presentation

- An overview of my PhD research.

- Efficient and reliable discriminative models under input uncertainties.
- Efficient Convex Optimization for Neural Network (Adversarial) Training.
- Mixing Classifiers to Alleviate the Accuracy-Robustness Trade-Off.

- Efficient and reliable media generation aligned with human preference.

- ConsistencyTTA: Accelerating Diffusion-Based Text-to-Audio Generation.

+ DRAGON: Optimizing Distributional Rewards Enhances Diffusion Models.

- Summary.
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This Presentation

- Efficient and reliable discriminative models under input uncertainties.



Challenges of Deep Discriminative Models

Ragged Optimization Landscapes. Vulnerable to adversarial inputs.

+.007 x

“panda” “nematode” “gibbon”
57.7% confidence 8.2% confidence 99.3 % confidence

Output = Stop Output = Go

Many spurious local minima

Source: Visualizing the Loss Landscape of Neural Nets Source: Explaining and Harnessing Adversarial Examples



Robust Classification Background

Geometric interpretation
of adversarial examples.

Adversarial input
€ (high loss)
X+ A
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Robust Classification Background

Geometric interpretation Robust classifiers separate perturbation sets.
of adversarial examples.

Adversarial input
. @
€ (high loss) &
h X+ A ® @ :
L
A ®|/e|®
4
/s’ L]
. ®
X‘ 2 2 @
Clean input{(low loss) |€
Nominal Decision Boundary Doesn’t Separate [,, Norm Balls Robust Decision Boundary
£, perturbation set (X) Madry, A., Makelov, A., Schmidt, L., Tsipras, D., and Vladu, A. Towards deep learning models
resistant to adversarial attacks. International Conference on Learning Representations, 2018.
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- An overview of my PhD research.
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- Efficient and reliable media generation aligned with human preference.

- ConsistencyTTA: Accelerating Diffusion-Based Text-to-Audio Generation.
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Convex Optimization for Neural Net Training (siMobs, Acc)

- Background
- Training neural networks with global optimality has been intractable.
- Adversarial training builds robust models by training with adversary.

- Even more challenging optimization: ming max, (6, x+€).

Adversary finds worst perturbation,

|

. .. |
Trainer optimizes network parameters

Robust Decision Boundary
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- Background

@
. : . . . o
- Training neural networks with global optimality has been intractable. el T o
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- Adversarial training builds robust models by training with adversary. o l/ell®
——
. .. . . &
- Even more challenging optimization: ming  max. €(6, x +¢€). - /ol |® "
l Adversary finds worst perturbation,
Trainer optimizes network parameters o
Robust Decision Boundary

- Convex Training

Same globally
optimal objective
d dimensions m hidden neurons ReLU Scalar output
Original training problem Convex training problem Applies to one-hidden-layer
Non-convex, unconstrained Convex, constrained scalar-output neural networks
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Convex Optimization for Neural Net Training (siMobs, Acc)

- Challenges of convex training
- Problem size is exponential to data dimension.

- Traditional algorithm:
interior point method (cubic complexity).
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- Challenges of convex training

- Problem size is exponential to data dimension.

- Traditional algorithm:
interior point method (cubic complexity).

- Our solutions

- An approximation with provable relaxation gap,
giving probabilistic global optimality.

- An ADMM algorithm with quadratic complexity.

- Complexity: Previous exponential 0(d6(§)3d)
l
Ours quadratic O(n*d?).
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Convex Optimization for Neural Net Training (siMobs, Acc)

- Challenges of convex training

- Problem size is exponential to data dimension. Downsampled CIFAR-10

104
- Traditional algorithm: !
interior point method (cubic complexity). n
O
—]
- Our solutions o \
- An approximation with provable relaxation gap, § ? —b \
giving probabilistic global optimality. F 1 Backprop D Ours
- An ADMM algorithm with quadratic complexity. 0 20 40 60 80 100 120

’ Time
. Complexity: Previous exponential 0(d®() )
l
Ours quadratic O(n*d?).
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Convex Optimization for Neural Net Training (siMobs, Acc)

- A convex optimization problem for adversarial training.

- Train robust neural networks with global optimality (provable upper bound).
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- A convex optimization problem for adversarial training.

- Train robust neural networks with global optimality (provable upper bound).

Convex Convex
Standard DD Adversarial
o QEE 2 Training

[O] [9]

=
X =

J
S
Robust decision 1 @
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Convex Optimization for Neural Net Training (siMobs, Acc)

- A convex optimization problem for adversarial training.

- Train robust neural networks with global optimality (provable upper bound).

Convex . Convex
Standard = Adversarial e
‘' @ Training A
X X 1 ® O
ETD B = = ~
. B o . 1l
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Robust decision D00 | o
boundary separates x Robust Decision Boundary
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Accuracy-Robustness Trade-Off

- Robust models often sacrifice
“clean accuracy”.

- Clean accuracy:

accuracy in natural circumstances
(no attack).

- Robust accuracy:
accuracy when subject to attack.
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- Robust models often sacrifice
“clean accuracy”.

- Clean accuracy:
accuracy in natural circumstances
(no attack).

- Robust accuracy:
accuracy when subject to attack.
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Accuracy-Robustness Trade-Off

Accuracy-Robustness Trade-Off

. pe More
- Robust models often sacrifice e o X
" ” RObUSt 0.6 —o— PGD-AT/ - .\°o
clean accuracy”. \
0.5 ?50- °
- Clean accuracy: 50 £ arsiour
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- Implications oo
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Tackling Accuracy-Robustness Trade-Off (rmLr, siMoDs, L4Dc)

- With convex training addressing optimization challenges, we now focus on
generalization.

- Our solution to the accuracy-robustness trade-off:

- Mix the predicted probabilities of a robust model and a standard model.

Convert back to logits Softmax

FG) =log (1 =)+ o'e g () + - 1)

Trade-Off Accurate Base Robust Base
Parameter ¢ Classifier (ABC) Classifier (RBC)
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Trade-Off Accurate Base Robust Base
Parameter ¢ Classifier (ABC) Classifier (RBC)

- Mixing probability versus logits.
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Tackling Accuracy-Robustness Trade-Off (rmLr, siMoDs, L4Dc)

Convert back to logits Softmax

FG) =log((1 =) 0o g () a2 1))

Trade-Off Accurate Base Robust Base
Parameter ¢ Classifier (ABC) Classifier (RBC)

Mixing Probabilities

ﬁetter
Trade-Off

- Mixing probability versus logits.
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Tackling Accuracy-Robustness Trade-Off (rmLr, siMoDs, L4Dc)

Convert back to logits

Softmax

FG) =log((1 =) 0o g () a2 1))

Trade-Off Accurate Base
Parameter ¢ Classifier (ABC)

- Mixing probability versus logits.
- Logits: unbounded.
- Can be "“arbitrarily wrong"”.
- Probabilities: in [0, 1].

- Damage from non-robustness is contained.

- Mixing probability is better!

Robust Accuracy

o
1

Robust Base
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Mixing Probabilities
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Tackling Accuracy-Robustness Trade-Off (rmLr, siMoDs, L4Dc)

Convert back to logits Softmax

f@x) =1log ((1 - g(x» 709 () +a()- o h(x))

Trade-Off Accurate Base Robust Base
Parameter ¢ Classifier (ABC) Classifier (RBC)

- Adaptive Smoothing: let « change with x.
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Tackling Accuracy-Robustness Trade-Off (rmLr, siMoDs, L4Dc)

Convert back to logits Softmax

f@x) =1log ((1 - g<x>) 709 () +a()- o h(x))

Trade-Off Accurate Base Robust Base
Parameter ¢ Classifier (ABC) Classifier (RBC)

- Adaptive Smoothing: let « change with x.

- The mixing network a(x): a new neural
network component.

. . . . “panda” “gibbon”
- Train a(x) with strong adversaries that exploits 57_7%pconﬁdence 99.30/(‘(’: skl

the new structure.

Clean example  Adversarial example

Small « to favor Large «a to favor
accurate model robust model
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Tackling Accuracy-Robustness Trade-Off (rmLr, siMoDs, L4Dc)

- Why does mixing probabilities improve the trade-off?
Robust models are more confident when correct than when incorrect, even when attacked.

le., is higher than Blue (clean incorrect) in the confidence plot.
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Tackling Accuracy-Robustness Trade-Off (rmLr, siMoDs, L4Dc)

- Why does mixing probabilities improve the trade-off?

Robust models are more confident when correct than when incorrect, even when attacked.

le., is higher than Blue (clean incorrect) in the confidence plot.
CIFAR-10 (4o) CIFAR-10 (¢3) CIFAR-100 ImageNet
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- Can we “enlarge” this benign confidence property?
Apply non-linear transformation to the robust model logits h(x).

Clean
Correct

Clean
Incorrect

AutoAttacked
Correct

AutoAttacked
Incorrect

Margin Gap
(higher is better)
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Tackling Accuracy-Robustness Trade-Off (rmLr, siMoDs, L4Dc)

- Mixing with non-linear transformation (MixedNUTS) improves accuracy-

robustness balance.
CIFAR-10

70 -
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Tackling Accuracy-Robustness Trade-Off (rmLr, siMoDs, L4Dc)

- Mixing with non-linear transformation (MixedNUTS) improves accuracy-
robustness balance.

CIFAR-10 CIFAR-100 ImageNet
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) ' MixedNUTS (ours) @ ® Standard Model n ® Standard Model
_§ 30 _: AS (ours) § 30 _I MixedNUTS (ours) _g 10 MixedNUTS (ours)
o | & | AS (ours) DC,E |
I I I
T T T T T T T T T T T T T T T T
90 92 94 96 98 65 70 75 80 85 90 73 76 79 82 85
Clean Accuracy (%) Clean Accuracy (%) Clean Accuracy (%)

- Also: certified robustness.

- Mostly training-free.
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Summary On Robust Classification

_ Efficiency Reliability

Convex Training

Mixing Classifiers
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Summary On Robust Classification

_ Efficiency Reliability

* Global optimality guarantee
« Robustness guarantees w/ adversarial training

Convex Training » Polynomial-time

Mixing Classifiers
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Summary On Robust Classification

_ Efficiency Reliability

* Global optimality guarantee

Convex Training > FEIEEIRTATS ) Robustness guarantees w/ adversarial training
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Summary On Robust Classification

_ Efficiency Reliability

* Global optimality guarantee

Convex Training > FEIEEIRTATS ) Robustness guarantees w/ adversarial training
. e * Training-free * Interpretable formulation
Mixing Classifiers Plug-and-play * Robust models are now practical

- So far, we made discriminative models more dependable.

- Especially when the training data does not cover all scenarios.

- Next, we discuss generative models.

- A different train-test mismatch; different efficiency and reliability challenges.
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This Presentation

- An overview of my PhD research.

- Efficient and reliable discriminative models under input uncertainties.
- Efficient Convex Optimization for Neural Network (Adversarial) Training.
- Mixing Classifiers to Alleviate the Accuracy-Robustness Trade-Off.

- Efficient and reliable media generation aligned with human preference.

- ConsistencyTTA: Accelerating Diffusion-Based Text-to-Audio Generation.

- DRAGON: Optimizing Distributional Rewards Enhances Diffusion Models.
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Media Generation

- Media generation, a recently emerged impactful deep learning area
- E.g., audio, music, images, videos.
- Models interact with people in a creative way.

- Alignment with human need is paramount!

Al-generated cover image
for a research project
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Media Generation

- Media generation, a recently emerged impactful deep learning area
- E.g., audio, music, images, videos.
- Models interact with people in a creative way.

- Alignment with human need is paramount!

- Audio/music creation
- Global music industry reached US$26.2 billion in 2022.
- Film and video market reached US$273.35 billion.

- Amateurs can now become composers/directors!

Al-generated cover image
for a research project
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Diffusion Model Background

- Diffusion models are one of the most popular approaches to media generation.

- Training

= Various
L amount of =

.= % Noisy
B noise

data

Minimize

£, distance /

Reconstruction Model inference (de-noise)
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Diffusion Model Background

- Diffusion models are one of the most popular approaches to media generation.
- Training
' Various

¥ amount of =
8 noise

Minimize

£, distance /

Reconstruction

- Inference

Pure

Data Noise

Source: https://developer.nvidia.com/blog/improving-diffusion-models-as-an-alternative-to-gans-part-1 16/35



Training Objective Mismatch

- Diffusion models’ training objective (de-noising) does not match the target
task (creative generation).

Training objective i Target task
creative generation

denolsing
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Training Objective Mismatch

- Diffusion models’ training objective (de-noising) does not match the target
task (creative generation).

Training objective i Target task
creative generation

denolsing

- Two issues:
- Slow inference (due to iterative inference).

- Reward misalignment (good denoiser # good creator).
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ConsistencyTTA (NTERSPEECH 2024)

- Can we tackle both issues via non-
iterative inference?
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ConsistencyTTA (NTERSPEECH 2024)

- Can we tackle both issues via non-

iterative inference? N
- Accelerate diffusion-based text-to-audio .
generation with consistency distillation. 3 "
- In-the-wild audio (environmental sound). 03' ":.
+ 400x theoretical acceleration. 5. gﬁ?f(ig;gga&celeratiOH
- 72x real-world speed-up. 1 100 200 300 400

.. . . . Speedup (times)
- Minimal change in audio quality.
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ConsistencyTTA (NTERSPEECH 2024)

- Consistency distillation

- Condensed model capability: same model size, inference iterations decreased to 7.

Noisy

Various ™ Jata

‘i amount of =
= s noise

Data

Diffusion teacher
inference
(partial de-noise)

Student inference 1
(de-noise)

Reconstruction 1

Minimize

£, distance

Student inference 2

Reconstruction 2 (de-noise)
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ConsistencyTTA (NTERSPEECH 2024)

- Consistency distillation

- Condensed model capability: same model size, inference iterations decreased to 7.

Noisy
= data

= Various
o amount of =
S noise

Data

Diffusion teacher
inference
(partial de-noise)

Student inference 1
(de-noise)

Reconstruction 1

Minimize

£, distance

Student inference 2

Reconstruction 2 (de-noise)

Consistency Inference

B Pure
SR R noise

Single-step
Student
inference

Generation
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ConsistencyTTA (NTERSPEECH 2024)

- Classifier-Free Guidance: inference-time operation outside the denoiser that enhances results.

- CFG-Aware Distillation:

Noisy

i Various 8
& data

= amount of = §
28 noise

Data

Diffusion teacher

inference with CFG
(partial de-noise)

Student inference 1
(de-noise)

Reconstruction 1

Minimize

£, distance

Student inference 2

Reconstruction 2 (de-noise)
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ConsistencyTTA (NTERSPEECH 2024)

- Now, our model has non-iterative inference and is end-to-end differentiable.

Text Encoder
FLAN-T5-L
1x Model Query
CFG-Aware Latent-Space Audio I|l|||n||||||||
Consistency Model Decoder

VAE+HiFi-GAN
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ConsistencyTTA (NTERSPEECH 2024)

- Now, our model has non-iterative inference and is end-to-end differentiable.

- We can fine-tune target task reward functions to address train-test mismatch.

- CLAP Score: cosine similarity of a generation and a reference in an embedding space.

Diffusion Baseline
5 i . FAD: 1.908, FD: 19.57, KLD: 1.350 Fi ne_tu ning
Text Encoder 21m prf)ves
FLAN-T5-L 24 ’ Quality
1]
3
1x Model Query o o
. 3| o8
CFG-Aware Latent-Space Audio i Traditional
Consistency Model De?{%d(}e;\l 5 ] Diffusion Acceleration
VAE+HiFi- °
1 100 200 300 400

Speedup (times)
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ConsistencyTTA Live Demo

- Demo Link
https://huggingface.co/spaces/Bai-YT/ConsistencyTTA
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https://huggingface.co/spaces/Bai-YT/ConsistencyTTA

This Presentation

- An overview of my PhD research.

- Efficient and reliable discriminative models under input uncertainties.
- Efficient Convex Optimization for Neural Network (Adversarial) Training.
- Mixing Classifiers to Alleviate the Accuracy-Robustness Trade-Off.

- Efficient and reliable media generation aligned with human preference.

- ConsistencyTTA: Accelerating Diffusion-Based Text-to-Audio Generation.

- DRAGON: Optimizing Distributional Rewards Enhances Diffusion Models.

- Summary.



Optimizing Distributional Rewards Enhances Diffusion Models

- ConsistencyTTA tackled training objective misalignment with non-iterative inference.
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Optimizing Distributional Rewards Enhances Diffusion Models

- ConsistencyTTA tackled training objective misalignment with non-iterative inference.

- Can we instead make reward optimization compatible with iterative denoising?
- Can we make diffusion media generation more aligned with human preference?

- We propose DRAGON.

- An online on-policy reward optimization framework for media creation.
Compatible with reward functions that evaluate individual examples or distributions.
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DRAGON Method

- Goal:

- Maximize a reward function
Taist: P 2> R
that evaluates distributions.

- Per-instance reward special case

Taist(Dg) = ]EX~D9 Tinstance (X)-

l m » ASingle
Reward Value
Distribution Distributional

of Generations Reward Function
Dg
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- Per-instance reward special case
Taist(Dg) = ]EX~D9 Tinstance (X)-

II”I 'm » ASingle
Reward Value
Distribution Distributional

of Generations Reward Function
Dg

KL-Based Loss:

Diffusion-DPO
Diffusion-KTO

Positive
Demonstrations
D,

Dg
(On-policy)

Split so that
rdist(D+) = rdist(D—)

Negative
Demonstrations
D_




DRAGON Method

- Goal:

- Maximize a reward function
Taist: P 2> R
that evaluates distributions.

- Per-instance reward special case
Taist(Dg) = ]EX~D9 Tinstance (X)-
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of Generations Reward Function
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Splitting into D, and D_
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Splitting into D, and D_
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Splitting into D, and D_
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DRAGON Workflow

________________________________

Compatible Rewards:

Instance-wise

On-Policy Generation
-------- Sample----- . .
amp'e ! Online Processing
Prompt J {Music Caption} N
Reference Reward
Batch —
Q, Dataset = [ Examples ] [Function r
=~ J
Generttor g Generation 1 v . v z
@ Batch = J >[ Evaluation (Alg 1)@9 ]
Update v ¥
\ A : |
Loss Function _[[ Positive Set D+J [[Negatlve Set D_J— i
E.g., DPO, KTO Contrastive Demonstrations

E.g., Aesthetics score

Instance-to-instance
E.g., CLAP score

Instance-to-distribution
E.g., Per-song FAD

Distribution-to-distribution
E.g., Full-dataset FAD

Distributional .
E.g., Vendi diversity score
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A New Way to Construct Rewards

- Reward construction has been challenging for media generation.
- Media is perceptive. Hard to use criteria-based rewards like LLM alignment.

- Hard to gather high-quality large-scale preference annotations.

- Leveraging DRAGON's versatility, we construct exemplar-based rewards.
- Exemplars: A set of high-quality music embeddings.

* Instance-to-instance (CLAP score) Set
'Il‘“"' « Distribution-to-distribution (FAD) "’|""'
* Instance-to-distribution (Per-song FAD)
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A New Way to Construct Rewards

- Reward construction has been challenging for media generation.
- Media is perceptive. Hard to use criteria-based rewards like LLM alignment.

- Hard to gather high-quality large-scale preference annotations.

- Leveraging DRAGON's versatility, we construct exemplar-based rewards.

- Exemplars: A set of high-quality text (e.g., music captions, via cross-modal embedding spaces).

/wé’ with eXer“h/wﬁmplar

* Instance-to-instance (CLAP score) Set
"”'"" * Distribution-to-distribution (FAD)
* Instance-to-distribution (Per-song FAD)

Dg

26/33



Main Experiment Result

Each vertex considers a reward metric and
reports the win rate of the DRAGON model
optimized for the metric.

DPO-Paired Diversity Reward
100% (Vendi) Win Rate
KTO-Paired 50%
Baseline
75%
KTO-Unpaired VAE
Audio

50%  ~ =«
Dataset FAD

25% CLAP

CLAP Score Audio

VAE
Audio

CLAP
Music Caption

CLAP
Audio
CLAP CLAP
Per-Song FAD CLAP  Ungrounded  yngrounded
Music Caption  Text Text

Experiment results on optimizing a text-to-music diffusion model.

- Over 20 reward functions, DRAGON achieves an 81.45% win rate on average.
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Human Listening Test

- DRAGON-vs-Baseline binary comparison test.

- 21 raters, each rate 20 random blinded pairs (420 total).

- Via exemplar sets, DRAGON improves human-perceived quality
without human annotated preference dataset.
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Generation Examples

Electro dance song to play in the pub to cheer up the crowd.

DRAGON-Aesthetics DRAGON-PSFAD-VAE-ALIM Baseline
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Generation Examples
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This Presentation

- An overview of my PhD research.

- Efficient and reliable discriminative models under input uncertainties.
- Efficient Convex Optimization for Neural Network (Adversarial) Training.

- Mixing Classifiers to Alleviate the Accuracy-Robustness Trade-Off.
- Efficient and reliable media generation aligned with human preference.

- ConsistencyTTA: Accelerating Diffusion-Based Text-to-Audio Generation.

- DRAGON: Optimizing Distributional Rewards Enhances Diffusion Models.

- Summary.



Summary

Diffusion Models —
Audio/Music Generation

 Distillation/Acceleration

» Reward Optimization

¥ ConsistencyTTA ¥

Text Encoder
FLAN-T5-L

CFG-Aware Latent-Space Audio
B mmwrs Decoder mummees

Consistency Model L
VAE+HiFi-GAN

ML Safety -
Adversarial Robustness

 Accuracy-Robustness Balance

60

Previous Robust Models
® Standard Model
MixedNUTS (ours)

revious Robust Models 45 |
® Standard Model
MixedNUTS (ours)

* 55 4 ‘
, A proved
> * 501 Trade-Off

Robust Accuracy (%

76 79 82 85
Clean Accuracy (%)

Convex Optimization
for Training Neural Nets

» Convex Training

» Convex Adversarial Training

Standard Training (Alg 1) Adversarial Training (Alg 2
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Summary

_ Efficiency Reliability

Convex Trainin * Polynomial- * Global optimality guarantee
9 time * Robustness guarantees w/ adversarial training
e Training-free * Interpretable formulation

Mixing Classifiers * Plug-and-play Robust models are now practical

Diffusion Distillation

Distributional Reward
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Summary

_ Efficiency Reliability

Convex Trainin * Polynomial- * Global optimality guarantee
9 time * Robustness guarantees w/ adversarial training
e Training-free * Interpretable formulation

Mixing Classifiers * Plug-and-play Robust models are now practical

Diffusion Distillation * 400x speedup * End-to-end optimizes reward functions

* Exemplar- » Reward optimization on a distribution level

Distributional Reward based reward < Address the training objective mismatch

31/33



Next Steps

- Efficient and Reliable Optimization for Deep Learning and Media Generation
In an industry setting.

- Distillation + reward optimization for diffusion models.
- Adversarial attack and defense with generative models.

- Optimizing more fine-grained rewards for media generation (e.g., text adherence).

- Research scientist at the music generation team of || By'te Dance.
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