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� An overview of my PhD research.

� Efficient and reliable discriminative models under input uncertainties.
� Efficient Convex Optimization for Neural Network (Adversarial) Training.

� Mixing Classifiers to Alleviate the Accuracy-Robustness Trade-Off.

� Efficient and reliable media generation aligned with human preference.

� ConsistencyTTA: Accelerating Diffusion-Based Text-to-Audio Generation.

� DRAGON: Optimizing Distributional Rewards Enhances Diffusion Models.

� Summary.
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Efficient and Reliable Deep Learning and Media Creation

Diffusion Models – 
Audio/Music Generation

Convex Optimization
for Training Neural Nets

Safe Deep Learning –
Adversarial Robustness
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Convex Optimization
for Training Neural Nets

• Convex Training
for Two-Layer ReLU Neural Networks

• Convex Adversarial Training
for Robust Two-Layer ReLU NNs

Standard Training (Alg 1) Adversarial Training (Alg 2)
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Convex Optimization
for Training Neural Nets

• Convex Training
for Two-Layer ReLU Neural Networks

• Convex Adversarial Training
for Robust Two-Layer ReLU NNs

Standard Training (Alg 1) Adversarial Training (Alg 2)

• LLM Vulnerability
Ranking Manipulation for 
Conversational Search Engines

• Robust Image Classification
Tackling the “Accuracy-Robustness 
Trade-Off”
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Diffusion Models – 
Audio/Music Generation

• ConsistencyTTA
Accelerating Diffusion-Based
Text-to-Audio Generation

• Reward Optimization
Optimizing Distributional Rewards 
Enhances Music Generation

Audio
Decoder

 

VAE+HiFi-GAN

Text Encoder
FLAN-T5-L

1x Model Query
CFG-Aware Latent-Space

Consistency Model

ConsistencyTTA

• LLM Vulnerability
Ranking Manipulation for 
Conversational Search Engines

• Robust Image Classification
Tackling the “Accuracy-Robustness 
Trade-Off”
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� An overview of my PhD research.

� Efficient and reliable discriminative models under input uncertainties.
� Efficient Convex Optimization for Neural Network Adversarial Training.

� Mixing Classifiers to Alleviate the Accuracy-Robustness Trade-Off.

� Efficient and reliable media generation aligned with human preference.

� ConsistencyTTA: Accelerating Diffusion-Based Text-to-Audio Generation.

� DRAGON: Optimizing Distributional Rewards Enhances Diffusion Models.

� Summary.
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Challenges of Deep Discriminative Models

Vulnerable to adversarial inputs.Ragged Optimization Landscapes.
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Many spurious local minima

Source: Visualizing the Loss Landscape of Neural Nets Source: Explaining and Harnessing Adversarial Examples



Robust Classification Background

Clean input (low loss)

ℓ! perturbation set (")

#

#
Adversarial input

(high loss)

$
Δ

$ + Δ

Geometric interpretation 
of adversarial examples.
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Clean input (low loss)

ℓ! perturbation set (")

#

#
Adversarial input

(high loss)

$
Δ
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Geometric interpretation 
of adversarial examples.

Robust classifiers separate perturbation sets. 
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� An overview of my PhD research.

� Efficient and reliable discriminative models under input uncertainties.
� Efficient Convex Optimization for Neural Network (Adversarial) Training.

� Mixing Classifiers to Alleviate the Accuracy-Robustness Trade-Off.

� Efficient and reliable media generation aligned with human preference.

� ConsistencyTTA: Accelerating Diffusion-Based Text-to-Audio Generation.

� DRAGON: Optimizing Distributional Rewards Enhances Diffusion Models.

� Summary.
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Convex Optimization for Neural Net Training (SIMODS, ACC)

� Background
� Training neural networks with global optimality has been intractable.
� Adversarial training builds robust models by training with adversary.
� Even more challenging optimization: min! 	 max" 	 ℓ(	𝜃, 𝑥 + 𝜖	).

Adversary finds worst perturbation
Trainer optimizes network parameters

Convex 
Adversarial 
Training
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Convex, constrained

Same globally
optimal objective
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Applies to one-hidden-layer
scalar-output neural networks

Original training problem
Non-convex, unconstrained

Convex training problem
Convex, constrained

Same globally
optimal objective

Feasible set

2. Recover Weights 1. Solve
    Convex
    Problem



Convex Optimization for Neural Net Training (SIMODS, ACC)

� Challenges of convex training
� Problem size is exponential to data dimension.

� Traditional algorithm:
interior point method (cubic complexity).
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� Our solutions
� An approximation with provable relaxation gap, 

giving probabilistic global optimality.

� An ADMM algorithm with quadratic complexity.

� Complexity: Previous exponential 𝒪 𝑑#	
                       ↓ 
  Ours quadratic 𝒪 𝑛$𝑑$ .

𝑛
𝑑

!"

6/35



Convex Optimization for Neural Net Training (SIMODS, ACC)

� Challenges of convex training
� Problem size is exponential to data dimension.

� Traditional algorithm:
interior point method (cubic complexity).

� Our solutions
� An approximation with provable relaxation gap, 

giving probabilistic global optimality.

� An ADMM algorithm with quadratic complexity.

� Complexity: Previous exponential 𝒪 𝑑#	
                       ↓ 
  Ours quadratic 𝒪 𝑛$𝑑$ .

𝑛
𝑑

!"

6/35

Time

Tr
ai

ni
ng

 L
os

s

Ours

Traditional Gradient Descent



Convex Optimization for Neural Net Training (SIMODS, ACC)
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� A convex optimization problem for adversarial training. 
� Train robust neural networks with global optimality (provable upper bound).



Convex Optimization for Neural Net Training (SIMODS, ACC)

Standard Training (Alg 1)

Convex 
Standard 
Training

Adversarial Training (Alg 2)

Convex 
Adversarial 
Training

Robust decision 
boundary separates 
perturbation boxes
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� A convex optimization problem for adversarial training. 
� Train robust neural networks with global optimality (provable upper bound).



� An overview of my PhD research.
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Accuracy-Robustness Trade-Off
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� Robust models often sacrifice 
“clean accuracy”.
� Clean accuracy:

accuracy in natural circumstances
(no attack).

� Robust accuracy:
accuracy when subject to attack.
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Towards Both Accurate and Robust 
Neural Networks Without Extra Data

Once-for-All Adversarial Training: In-Situ Tradeoff 
between Robustness and Accuracy for Free
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Improving the Accuracy-Robustness Trade-
Off of Classifiers via Adaptive Smoothing

Certified Adversarial Robustness 
via Randomized Smoothing

� Robust models often sacrifice 
“clean accuracy”.
� Clean accuracy:

accuracy in natural circumstances
(no attack).

� Robust accuracy:
accuracy when subject to attack.

More 
Robust

More Accurate
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Once-for-All Adversarial Training: In-Situ Tradeoff 
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Improving the Accuracy-Robustness Trade-
Off of Classifiers via Adaptive Smoothing

Certified Adversarial Robustness 
via Randomized Smoothing

� Robust models often sacrifice 
“clean accuracy”.
� Clean accuracy:

accuracy in natural circumstances
(no attack).

� Robust accuracy:
accuracy when subject to attack.

� Implications
� Discourages deploying robust 

models in real life.

� Real-world services are still unsafe!

More 
Robust

More Accurate



Tackling Accuracy-Robustness Trade-Off (TMLR, SIMODS, L4DC)

� With convex training addressing optimization challenges, we now focus on 
generalization.

� Our solution to the accuracy-robustness trade-off:
� Mix the predicted probabilities of a robust model and a standard model.

SoftmaxConvert back to logits

Robust Base 
Classifier (RBC)

Accurate Base 
Classifier (ABC)

Trade-Off 
Parameter 𝛼

𝑓 𝑥 ≔ log	 1 − 𝛼 ⋅ 𝜎 ∘ 𝑔 𝑥 + 𝛼 ⋅ 𝜎 ∘ ℎ 𝑥( )
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Tackling Accuracy-Robustness Trade-Off (TMLR, SIMODS, L4DC)

� Mixing probability versus logits.
� Logits: unbounded.
� Can be “arbitrarily wrong”.

� Probabilities: in [0, 1].
� Damage from non-robustness is contained.

� Mixing probability is better!

SoftmaxConvert back to logits
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Accurate Base 
Classifier (ABC)

Trade-Off 
Parameter 𝛼
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Tackling Accuracy-Robustness Trade-Off (TMLR, SIMODS, L4DC)

� Adaptive Smoothing: let 𝛼 change with 𝑥.

SoftmaxConvert back to logits

Robust Base 
Classifier (RBC)

Accurate Base 
Classifier (ABC)

Trade-Off 
Parameter 𝛼

𝑓 𝑥 ≔ log	 1 − 𝛼 𝑥 ⋅ 𝜎 ∘ 𝑔 𝑥 + 𝛼(𝑥) ⋅ 𝜎 ∘ ℎ 𝑥( )
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Small 𝛼 to favor 
accurate model

Adversarial example
Large 𝛼 to favor 
robust model



Tackling Accuracy-Robustness Trade-Off (TMLR, SIMODS, L4DC)

� Adaptive Smoothing: let 𝛼 change with 𝑥.
� The mixing network 𝛼 𝑥 : a new neural 

network component.

� Train 𝛼 𝑥  with strong adversaries that exploits 
the new structure.

SoftmaxConvert back to logits

Robust Base 
Classifier (RBC)

Accurate Base 
Classifier (ABC)

Trade-Off 
Parameter 𝛼

𝑓 𝑥 ≔ log	 1 − 𝛼 𝑥 ⋅ 𝜎 ∘ 𝑔 𝑥 + 𝛼(𝑥) ⋅ 𝜎 ∘ ℎ 𝑥( )
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Tackling Accuracy-Robustness Trade-Off (TMLR, SIMODS, L4DC)

� Why does mixing probabilities improve the trade-off?
Robust models are more confident when correct than when incorrect, even when attacked.

I.e., Orange (attacked correct) is higher than Blue (clean incorrect) in the confidence plot.
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Tackling Accuracy-Robustness Trade-Off (TMLR, SIMODS, L4DC)

� Why does mixing probabilities improve the trade-off?
Robust models are more confident when correct than when incorrect, even when attacked.

I.e., Orange (attacked correct) is higher than Blue (clean incorrect) in the confidence plot.

� Can we “enlarge” this benign confidence property?
Apply non-linear transformation to the robust model logits ℎ(𝑥).
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Tackling Accuracy-Robustness Trade-Off (TMLR, SIMODS, L4DC)

� Mixing with non-linear transformation (MixedNUTS) improves accuracy-
robustness balance.

13/35
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� Also: certified robustness.
� Mostly training-free.
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Summary On Robust Classification

Efficiency Reliability

Convex Training • Polynomial-time • Global optimality guarantee
• Robustness guarantees w/ adversarial training

Mixing Classifiers • Training-free
• Plug-and-play

• Interpretable formulation
• Robust models are now practical

� So far, we made discriminative models more dependable.
� Especially when the training data does not cover all scenarios.

� Next, we discuss generative models.
� A different train-test mismatch; different efficiency and reliability challenges.
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� An overview of my PhD research.

� Efficient and reliable discriminative models under input uncertainties.
� Efficient Convex Optimization for Neural Network (Adversarial) Training.

� Mixing Classifiers to Alleviate the Accuracy-Robustness Trade-Off.

� Efficient and reliable media generation aligned with human preference.

� ConsistencyTTA: Accelerating Diffusion-Based Text-to-Audio Generation.

� DRAGON: Optimizing Distributional Rewards Enhances Diffusion Models.

� Summary.
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Media Generation

� Media generation, a recently emerged impactful deep learning area
� E.g., audio, music, images, videos.
� Models interact with people in a creative way.
� Alignment with human need is paramount!
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Media Generation

� Media generation, a recently emerged impactful deep learning area
� E.g., audio, music, images, videos.
� Models interact with people in a creative way.
� Alignment with human need is paramount!

� Audio/music creation
� Global music industry reached US$26.2 billion in 2022.
� Film and video market reached US$273.35 billion.
� Amateurs can now become composers/directors!
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AI-generated cover image
for a research project



� Diffusion models are one of the most popular approaches to media generation.
� Training

Diffusion Model Background

16/35
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� Diffusion models are one of the most popular approaches to media generation.
� Training

� Inference

Diffusion Model Background

16/35

+
Various
amount of
noise

= Noisy
data

Model inference (de-noise)Reconstruction

Minimize
ℓ! distance

Pure

Source: https://developer.nvidia.com/blog/improving-diffusion-models-as-an-alternative-to-gans-part-1 



Training Objective Mismatch

� Diffusion models’ training objective (de-noising) does not match the target 
task (creative generation).
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Training Objective Mismatch

� Diffusion models’ training objective (de-noising) does not match the target 
task (creative generation).

� Two issues:
� Slow inference (due to iterative inference).

� Reward misalignment (good denoiser ≠ good creator).
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� An overview of my PhD research.

� Efficient and reliable discriminative models under input uncertainties.
� Efficient Convex Optimization for Neural Network (Adversarial) Training.

� Mixing Classifiers to Alleviate the Accuracy-Robustness Trade-Off.

� Efficient and reliable media generation aligned with human preference.

� ConsistencyTTA: Accelerating Diffusion-Based Text-to-Audio Generation.

� DRAGON: Optimizing Distributional Rewards Enhances Diffusion Models.

� Summary.
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ConsistencyTTA (INTERSPEECH 2024)

� Can we tackle both issues via non-
iterative inference?
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ConsistencyTTA (INTERSPEECH 2024)

� Can we tackle both issues via non-
iterative inference?

� Accelerate diffusion-based text-to-audio 
generation with consistency distillation.
� In-the-wild audio (environmental sound).
� 400x theoretical acceleration.
� 72x real-world speed-up.
� Minimal change in audio quality.

1 100 200 300 400
Speedup (times)

2

3

4

5

Q
ua

lit
y

Diffusion Baseline
FAD: 1.908, FD: 19.57, KLD: 1.350

Traditional
Diffusion Acceleration

ConsistencyTTA (ours)
FAD: 2.575, FD: 22.08, KLD: 1.354

ConsistencyTTA
+ CLAP-Finetune (ours)
FAD: 2.406, FD: 20.97, KLD: 1.358

FAD: Frechet Audio Distance,                                                  
FD: Frechet Distance                  
KLD: Kullback-Leibler Divergence.                                                                   
“Quality” is defined as   /                                    100 FD.
Lower is better for FAD, FD, and KLD.                                                                                          
Higher is better for Quality.                                        
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ConsistencyTTA (INTERSPEECH 2024)

� Consistency distillation
� Condensed model capability: same model size, inference iterations decreased to 1.

+
Various
amount of
noise

=
Noisy
data

Diffusion teacher
inference
(partial de-noise)

Reconstruction 1

Reconstruction 2

Student inference 1
(de-noise)

Student inference 2
(de-noise)

Minimize
ℓ! distance
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ConsistencyTTA (INTERSPEECH 2024)

� Consistency distillation
� Condensed model capability: same model size, inference iterations decreased to 1.

+
Various
amount of
noise

=
Noisy
data

Diffusion teacher
inference
(partial de-noise)

Reconstruction 1

Reconstruction 2

Student inference 1
(de-noise)

Student inference 2
(de-noise)

Minimize
ℓ! distance

Pure 
noise

Generation

Single-step
Student
inference

Consistency Inference
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ConsistencyTTA (INTERSPEECH 2024)

� Classifier-Free Guidance: inference-time operation outside the denoiser that enhances results.

� CFG-Aware Distillation: 

+
Various
amount of
noise

=
Noisy
data

Diffusion teacher
inference with CFG
(partial de-noise)

Reconstruction 1

Reconstruction 2

Student inference 1
(de-noise)

Student inference 2
(de-noise)

Minimize
ℓ! distance
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ConsistencyTTA (INTERSPEECH 2024)

� Now, our model has non-iterative inference and is end-to-end differentiable.

Audio
Decoder

 

VAE+HiFi-GAN

Text Encoder
FLAN-T5-L

1x Model Query
CFG-Aware Latent-Space

Consistency Model

ConsistencyTTA
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Speedup (times)
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Diffusion Baseline
FAD: 1.908, FD: 19.57, KLD: 1.350

Traditional
Diffusion Acceleration

ConsistencyTTA (ours)
FAD: 2.575, FD: 22.08, KLD: 1.354

ConsistencyTTA
+ CLAP-Finetune (ours)
FAD: 2.406, FD: 20.97, KLD: 1.358

FAD: Frechet Audio Distance,                                                  
FD: Frechet Distance                  
KLD: Kullback-Leibler Divergence.                                                                   
“Quality” is defined as   /                                    100 FD.
Lower is better for FAD, FD, and KLD.                                                                                          
Higher is better for Quality.                                        

ConsistencyTTA (INTERSPEECH 2024)

� Now, our model has non-iterative inference and is end-to-end differentiable.

� We can fine-tune target task reward functions to address train-test mismatch.
� CLAP Score: cosine similarity of a generation and a reference in an embedding space.

Audio
Decoder

 

VAE+HiFi-GAN

Text Encoder
FLAN-T5-L

1x Model Query
CFG-Aware Latent-Space

Consistency Model

ConsistencyTTA
Fine-tuning
Improves
Quality
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ConsistencyTTA Live Demo

� Demo Link
https://huggingface.co/spaces/Bai-YT/ConsistencyTTA

https://huggingface.co/spaces/Bai-YT/ConsistencyTTA


� An overview of my PhD research.

� Efficient and reliable discriminative models under input uncertainties.
� Efficient Convex Optimization for Neural Network (Adversarial) Training.

� Mixing Classifiers to Alleviate the Accuracy-Robustness Trade-Off.

� Efficient and reliable media generation aligned with human preference.

� ConsistencyTTA: Accelerating Diffusion-Based Text-to-Audio Generation.

� DRAGON: Optimizing Distributional Rewards Enhances Diffusion Models.

� Summary.

This PresentationThis Presentation



� ConsistencyTTA tackled training objective misalignment with non-iterative inference.

Optimizing Distributional Rewards Enhances Diffusion Models

.541
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� ConsistencyTTA tackled training objective misalignment with non-iterative inference.

� Can we instead make reward optimization compatible with iterative denoising?
� Can we make diffusion media generation more aligned with human preference?

Optimizing Distributional Rewards Enhances Diffusion Models

.541
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� ConsistencyTTA tackled training objective misalignment with non-iterative inference.

� Can we instead make reward optimization compatible with iterative denoising?
� Can we make diffusion media generation more aligned with human preference?

� We propose DRAGON.
� An online on-policy reward optimization framework for media creation.

Compatible with reward functions that evaluate individual examples or distributions.

Optimizing Distributional Rewards Enhances Diffusion Models

.541
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� Goal:
� Maximize a reward function

𝑟!"#$: 	𝒫 → ℝ
that evaluates distributions.

� Per-instance reward special case 
𝑟&'()(𝐷!) = 𝔼*∼,#	𝑟'-().-/0(𝑋).

DRAGON Method

𝑟%&'$
Distribution

of Generations
𝐷$

Distributional 
Reward Function

A Single 
Reward Value
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� DRAGON:� Goal:
� Maximize a reward function

𝑟!"#$: 	𝒫 → ℝ
that evaluates distributions.

� Per-instance reward special case 
𝑟&'()(𝐷!) = 𝔼*∼,#	𝑟'-().-/0(𝑋).

DRAGON Method

Positive 
Demonstrations
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𝑟%&'$
Distribution

of Generations
𝐷$

Distributional 
Reward Function

A Single 
Reward Value

Negative 
Demonstrations

𝐷2

Split so that
𝑟!"#$ 𝐷% ≥ 𝑟!"#$(𝐷&)

𝐷! 
(On-policy)
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� DRAGON:� Goal:
� Maximize a reward function

𝑟!"#$: 	𝒫 → ℝ
that evaluates distributions.

� Per-instance reward special case 
𝑟&'()(𝐷!) = 𝔼*∼,#	𝑟'-().-/0(𝑋).

DRAGON Method

Positive 
Demonstrations

𝐷1

𝑟%&'$
Distribution

of Generations
𝐷$

Distributional 
Reward Function

A Single 
Reward Value

Negative 
Demonstrations

𝐷2

Split so that
𝑟!"#$ 𝐷% ≥ 𝑟!"#$(𝐷&)Ap

pr
oa

ch

Repel

𝐷! 
(On-policy)
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� DRAGON:� Goal:
� Maximize a reward function

𝑟!"#$: 	𝒫 → ℝ
that evaluates distributions.

� Per-instance reward special case 
𝑟&'()(𝐷!) = 𝔼*∼,#	𝑟'-().-/0(𝑋).

DRAGON Method
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� DRAGON:� Goal:
� Maximize a reward function

𝑟!"#$: 	𝒫 → ℝ
that evaluates distributions.

� Per-instance reward special case 
𝑟&'()(𝐷!) = 𝔼*∼,#	𝑟'-().-/0(𝑋).

DRAGON Method

Positive 
Demonstrations

𝐷1

𝐷! 
(On-policy)

𝑟%&'$
Distribution

of Generations
𝐷$

Distributional 
Reward Function

A Single 
Reward Value

Negative 
Demonstrations

𝐷2

Split so that
𝑟!"#$ 𝐷% ≥ 𝑟!"#$(𝐷&)

M
in

im
ize

 K
L M

axim
ize KL

?
KL-Based Loss:
Diffusion-DPO
Diffusion-KTO
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Splitting into 𝐷! and 𝐷"

𝐷3

𝐷$

Random Split

𝐷! 
(On-policy)
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Splitting into 𝐷! and 𝐷"

Positive 
Initialization

𝐷1
(5)

Negative 
Initialization

𝐷2(5)

Swap a random 
pair of examples

𝐷! 
(On-policy)
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Splitting into 𝐷! and 𝐷"

Positive 
Initialization

𝐷1
(5)

Negative 
Initialization

𝐷2(5)

𝐷! 
(On-policy)

If the swap improves 𝐷1, accept
Otherwise, reject

𝐷1
(3)

𝐷2(3)
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Splitting into 𝐷! and 𝐷"

Positive 
Initialization

𝐷1
(7)

Negative 
Initialization

𝐷2(7)

𝐷! 
(On-policy)

𝐷1
(713)

𝐷2(713)

Repeat
Becomes a greedy algorithm
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DRAGON Workflow

Music Caption
Dataset       

Generator  Evaluation (Alg 1)     

Update

Loss Function
E.g., DPO, KTO

Sample

Reference
Examples

Generation
Batch      

On-Policy Generation

Online Processing
Prompt   
Batch     

 Positive Set  Negative Set 

Reward
Function 

Contrastive Demonstrations

Instance-wise
E.g., Aesthetics score

Instance-to-instance
E.g., CLAP score

Instance-to-distribution
E.g., Per-song FAD

Distribution-to-distribution
E.g., Full-dataset FAD

Distributional 
E.g., Vendi diversity score

Compatible Rewards:
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A New Way to Construct Rewards

� Reward construction has been challenging for media generation.
� Media is perceptive. Hard to use criteria-based rewards like LLM alignment.
� Hard to gather high-quality large-scale preference annotations.

� Leveraging DRAGON’s versatility, we construct exemplar-based rewards.
� Exemplars: A set of high-quality music embeddings.

𝐷!
Exemplar 

Set

Match 𝐷" with exemplars
• Instance-to-instance (CLAP score)

• Distribution-to-distribution (FAD)

• Instance-to-distribution (Per-song FAD)
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A New Way to Construct Rewards

� Reward construction has been challenging for media generation.
� Media is perceptive. Hard to use criteria-based rewards like LLM alignment.
� Hard to gather high-quality large-scale preference annotations.

� Leveraging DRAGON’s versatility, we construct exemplar-based rewards.
� Exemplars: A set of high-quality text (e.g., music captions, via cross-modal embedding spaces).

𝐷!
Exemplar 

Set

Match 𝐷" with exemplars
• Instance-to-instance (CLAP score)

• Distribution-to-distribution (FAD)

• Instance-to-distribution (Per-song FAD)

26/33



Main Experiment Result

� Experiment results on optimizing a text-to-music diffusion model.
� Over 20 reward functions, DRAGON achieves an 81.45% win rate on average.
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Each vertex considers a reward metric and 
reports the win rate of the DRAGON model 
optimized for the metric.
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Human Listening Test

� DRAGON-vs-Baseline binary comparison test.
� 21 raters, each rate 20 random blinded pairs (420 total).

� Via exemplar sets, DRAGON improves human-perceived quality
without human annotated preference dataset.

DRAGON Win Rate: 60.95% Baseline
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Generation Examples
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� An overview of my PhD research.

� Efficient and reliable discriminative models under input uncertainties.
� Efficient Convex Optimization for Neural Network (Adversarial) Training.

� Mixing Classifiers to Alleviate the Accuracy-Robustness Trade-Off.

� Efficient and reliable media generation aligned with human preference.

� ConsistencyTTA: Accelerating Diffusion-Based Text-to-Audio Generation.

� DRAGON: Optimizing Distributional Rewards Enhances Diffusion Models.

� Summary.

This PresentationThis Presentation



Summary

Diffusion Models – 
Audio/Music Generation

ML Safety –
Adversarial Robustness

Convex Optimization
for Training Neural Nets

• Distillation/Acceleration

• Reward Optimization

• Accuracy-Robustness Balance • Convex Training

• Convex Adversarial Training
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Improved
Trade-Off

Audio
Decoder

 

VAE+HiFi-GAN

Text Encoder
FLAN-T5-L

1x Model Query
CFG-Aware Latent-Space

Consistency Model

ConsistencyTTA

Standard Training (Alg 1) Adversarial Training (Alg 2)
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Summary

Efficiency Reliability

Convex Training • Polynomial-
time

• Global optimality guarantee
• Robustness guarantees w/ adversarial training

Mixing Classifiers • Training-free
• Plug-and-play

• Interpretable formulation
• Robust models are now practical

Diffusion Distillation

Distributional Reward
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Summary

Efficiency Reliability

Convex Training • Polynomial-
time

• Global optimality guarantee
• Robustness guarantees w/ adversarial training

Mixing Classifiers • Training-free
• Plug-and-play

• Interpretable formulation
• Robust models are now practical

Diffusion Distillation • 400x speedup • End-to-end optimizes reward functions 

Distributional Reward • Exemplar-
based reward

• Reward optimization on a distribution level
• Address the training objective mismatch

31/33



� Efficient and Reliable Optimization for Deep Learning and Media Generation 
in an industry setting.
� Distillation + reward optimization for diffusion models.

� Adversarial attack and defense with generative models.

� Optimizing more fine-grained rewards for media generation (e.g., text adherence).

� Research scientist at the music generation team of          .

Next Steps

32/33



Thanks to my collaborators and peers!
� Somayeh group:

� Other research collaborators:

Somayeh
Sojoudi

Samuel
Pfrommer

Brendon G
Anderson

Tanmay
Gautam

Jingqi
Li

Ziye
Ma

Elizabeth
Glista

Eli
Brock

Hyunin
Lee

Yixiao
Huang

Jiangyan
Ma

Aerin
Kim

Apaar
Shanker

Yu
Gai

Kazuhito
Koishida

Dung
Tran

Trung
Dang

Mo
Zhou

Vishal M
Patel

Nicholas J
Bryan

Jonah
Casebeer

� Dissertation Committee:
� And many others!

Somayeh
Sojoudi

Javad
Lavaei

Kameshwar
Poolla 33/33



Publications Presented
1. Practical Convex Formulation of Robust One-Hidden-Layer Neural Network Training.

Yatong Bai, Tanmay Gautam, Yu Gai, Somayeh Sojoudi, in American Control Conference (ACC), 2022.

2. Efficient Global Optimization of Two-Layer ReLU Networks: Adversarial Training and Quadratic-time Algorithms.
Yatong Bai, Tanmay Gautam, Somayeh Sojoudi, in SIAM Journal on Mathematics of Data Science (SIMODS) 5 (2), 446-474, 2023.

3. Mixing Classifiers to Alleviate the Accuracy-Robustness Trade-Off.
Yatong Bai, Brendon G. Anderson, Somayeh Sojoudi, in Annual Learning for Dynamics & Control Conference (L4DC), 2024.

4. Improving the Accuracy-Robustness Trade-Off of Classifiers via Adaptive Smoothing.
Yatong Bai, Brendon G. Anderson, Aerin Kim, Somayeh Sojoudi, in SIAM Journal on Mathematics of Data Science (SIMODS) 6 (3), 2024.

5. MixedNUTS: Training-Free Accuracy-Robustness Balance via Nonlinearly Mixed Classifiers.
Yatong Bai, Mo Zhou, Vishal M. Patel, Somayeh Sojoudi, in Transactions on Machine Learning Research (TMLR), 2024.

6. ConsistencyTTA: Accelerating Diffusion-Based Text-to-Audio Generation with Consistency Distillation.
Yatong Bai, Trung Dang, Dung Tran, Kazuhito Koishida, and Somayeh Sojoudi, in INTERSPEECH, 2024.

7. DRAGON: Distributional Rewards Optimize Diffusion Generative Models.
Yatong Bai, Jonah Casebeer, Somayeh Sojoudi, Nicholas J. Bryan, under submission.


