
Imitation Human Behavior Model for Interactive Autonomous Driving
Simulation

Chenran Li1, Akio Kodaira1, Yatong Bai1

Abstract— Traditionally, evaluations for motion planning al-
gorithms are preformed by letting the planner react to replayed
data environments or algorithm-driven environments. However,
these evaluation approaches have major issues: The replayed
data environments cannot react to the actions of the subject
planner, and the subject planner always favors actions that
yields to other agents as a result. On the other hand, the
algorithm-driven agent may not accurately represent human
behavior and can cause the state transitional distribution in
the simulated environment to be incorrect. On the other hand,
algorithm-driven environments may not accurately represent
human behaviors and can cause incorrect state transitional
distributions. To solve this problem and enable interactive
autonomous driving simulation, we implement a neural network
policy based on the imitation learning framework to mimic the
human behaviors. We also establish a simulator for closed-
loop simulation and propose an “A? planning”-based pseudo-
expert to provide expert demonstration for DAgger, a data
augmentation technique for imitation learning. We validate our
proposed framework in reactive simulation environments. The
experimental results show that our framework can improve
the performance of the human behavior model for autonomous
driving.

I. INTRODUCTION
Recently, the autonomous driving technology has been

attracting huge attention. Along with the rapid development
of the autonomous driving, a number of planning and control
algorithms have been developed [1]–[4]. Since, the real
world evaluation experiment for those developed planning
algorithms is difficult to be carried out, it is essential to
develop an accurate evaluation system using the simulator.
Traditionally, the literature evaluates the planning algorithms
by letting them react with the replayed data environments
and algorithm-driven environments. However, there are two
major issues associated with these evaluation approaches. On
the one hand, the replayed data environments could not react
to the planning algorithms’ actions. As a result, the subject
planners always favor actions of yielding to other agents.
On the other hand, the behavior of the algorithm-driven
environments that use model based planner [2] may not
accurately represent the real environment. From the subject
planner’s perspective, this mismatch may cause the state
transitional distribution in the simulated environment to be
incorrect. To address these problems, a reactive model that
can reproduce human behavior is required.

In this paper, we develop an imitation human behavior
model refined by DAgger with planner based pseudo-expert.
The contributions of this paper are threefold:

1 Department of Mechanical Engineering, University of Califor-
nia, Berkeley, California, USA chenran li, akio.kodaira,
yatong bai@berkeley.edu

- We implement an imitation human behavior model
based on Behavioral Cloning that can be improved by
applying DAgger iteratively. We use the real traffic data
provided by INTERACTION dataset [5] to train the
human behavior model.

- We use an A? planner as a pseudo-expert and make the
data augmentation process of DAgger fully automated
and efficient.

- We validate the performance of the proposed method
using reactive close-loop simulation on Intersection
Scenario and Roundabout Scenario. The experimental
results show the effectiveness of the proposed method.

A. Related work
1) Behavior cloning: One common approach to develop

a human behavior reactive model for autonomous driving is
behavior cloning (BC) [6]–[9]. BC, an instance of imitation
learning algorithms, directly maps an observation to an
action. BC can combine perception and control into an end-
to-end trainable model. However, previous policies built upon
BC are not robust in practical environment because of the
inherent distribution shift problem [10], [11].

2) DAgger: One solution for the distributional shift prob-
lem of BC is using data aggregation algorithms such as
DAgger. DAgger solves the distribution shift problem by col-
lecting expert demonstration, and adding them to the training
dataset for iterative model re-training. In autonomous driving
field, for example, DAgger is used to solve the off-road
control problem [12] and the urban-driving problem [13].

3) Planning: When a human expert provides the demon-
stration data for DAgger, the sample inefficiency problem
of DAgger hinders its wide application in the field of
autonomous driving. Specifically, it requires too much human
effort to collect demonstration data for each specific driving
scenario. An efficient way to perform DAgger is to use
model-based planning algorithms developed for autonomous
driving as a pseudo-expert. While model-based planners may
not act the same as humans, they are able to achieve prop-
erties such as smoothness, mild acceleration, and safety in
general. Therefore, model-based planners can act as pseudo-
experts when a human-behavioral model fails to generate
appropriate trajectories. We use an A? planner in this paper
as the pseudo-expert to carry out DAgger efficiently.

4) Prediction: Prediction refers to the task of predicting
the surrounding agents’ future trajectories given the state his-
tory of the environment. As rule-based methods struggle to
infer the sub-optimality of human behavior, many learning-
based methods are proposed. The task of prediction is a re-

laxed task of BC since both tasks require the same input and
produce the same output. Therefore, an existing prediction
model can be used as the starting point for constructing a
BC model. Recently, the work [14] has introduced a novel
neural network architecture for autonomous driving tasks.
The inputs of neural network are the past trajectories of all
agents in the environment and the map topology represented
as a graph. In the prediction setting, the architecture in [14]
achieves the best prediction accuracy among recent works
[15]–[18]. The details of this architecture will be introduced
in Section III-B. Despite its success in prediction setting, this
architecture can still be non-robust in planning setting due
to the distributional shift problem.

The paper is organized as follows: Section II introduces
simulation construction. Section III describes the policy
implementation based on the novel neural network. The
implementations of failure identification for the BC model
and the design of the DAgger process and the underlying
pseudo-expert will be explained in Section IV and Section V,
respectively. The results including simulations will be given
in Section VI. Finally, Section VII presents the conclusions.

II. SIMULATION CONSTRUCTION

In this work, we design a neural network BC policy (NN
policy) that imitates human behaviors by learning from real
traffic data provided by the INTERACTION dataset [5]. We
select two typical interaction scenarios shown in Figure 1.
We train the NN policy over these two scenarios.

Fig. 1. Selected Scenarios form the INTERACTION dataset

The simulation is designed based on the same dataset.
We first select the interaction group and the interaction
period. We use the start frame of the interaction period as
the initial frame and launch the simulation until the end of
the selected interaction period. A vehicle selected randomly
in the interaction group (referred to as the ego vehicle) is
controlled by the neural network policy, while other vehicles
in the interaction group are controlled by an expert planner.
Vehicles outside the interaction group can also have mild
influences on the interaction group. These non-interaction-
group vehicles are controlled by the intelligent driver model
(IDM). Therefore, the simulation will be a highly interactive
environment, where every agents in the scenario will react
to the ego vehicles action.

Notation Definition Length

Spla,i ith candidate NN trajectory Hpla
Ssmo,i ith smoothed candidate NN trajectory Hpla
S?smo Selected smoothed NN trajectory Hpla
Sctrl Executed trajectory Hpla
Sexp Expert future trajectory Hpla
Spast Past trajectory Hpast

TABLE I
NOTATIONS FOR TRAJECTORIES.

III. POLICY IMPLEMENTATION

A. Notations for datasets and trajectories

The NN policy refers to denote the control policy powered
by the neural network. For an agent in the environment, we
define the trajectory notations Spla,i, Ssmo,i, S?smo, Sctrl, Sexp,
Spast as in Table I, where i= 1, . . . ,K, and K is the number of
candidate trajectories generated by the neural network. K is a
hyperparameter of the NN policy and is set to 6 in this paper.
Note that Sctrl can be generated by either the NN policy or
some other policies. The expert trajectory Sexp can either
come from a training dataset or a planner algorithm. The
notations Hpla, Hpast denote the lengths of the corresponding
trajectories. In Section III-C, we discuss how Ssmo,i, S?smo,
and Sctrl are computed.

When the NN policy is trained or evaluated with a dataset,
the superscipt (j) denotes the trajectory corresponds to the
jth data. When the NN policy is applied in a real-time
environment, the superscript (t) denotes the trajectory is
generated at time step t. For a trajectory S(j), the notation
s(j,h) denotes the hth coordinate in S(j).

The set D := {(S(j)
past,S

(j)
exp)}, j = 1,2, · · · ,n defines a dataset

containing n ground-truth trajectories. For each S(j)
past, the NN

policy generates a set of predicted future trajectories S(j)
pla,i

with i = 1,2, · · · ,K. Moreover, the neural network assigns
each S(j)

pla,i with a confidence level, defined as a probability
measure P(j)

i satisfying ÂK
i=1 P(j)

i = 1 for all j. The output
trajectories are sorted by confidence in a decreasing order
(i. e. P(j)

i � P(j)
i+1 for all i). We represent the NN policy as

fq : Spast ! {(Spla,i,P)}K
i=1, where q denotes the trainable

parameters in the underlying neural network.
The following two metrics are used to evaluate a candidate

trajectory S(j)
pla,i with respect to an expert trajectory S(j)

exp:

• Average distance error (ADE):

ADE
�
S(j)

pla,i,S
(j)
exp
�
=

1
Hpla

Hpla

Â
h=1

��s(j,h)
pla,i � s(j,h)

exp
��2

2 (1)

• Final distance error (FDE):

FDE
�
S(j)

pla,i,S
(j)
exp
�
=
��s

(j,Hpla)
pla,i � s

(j,Hpla)
exp

��2
2

(2)

The common metrics below are used for evaluating a
model fq :

ActorNet
1D CNN + FPN

MapNet
LaneGCN Block

FusionNet

Attention

LaneGCN

Attention

Attention

Prediction Header

Past trajectories
of all agents

Lane Graph that
represents the map

1D ResNetBlock

Fig. 2. The architecture of the NN policy.

• ADE and FDE: We overload the notations for model
evaluation as

ADE(fq ,D) =
1
n

n

Â
j=1

min
i=1,...,K

ADE
�
S(j)

pla,i,S
(j)
exp
�

FDE(fq ,D) =
1
n

n

Â
j=1

min
i=1,...,K

FDE
�
S(j)

pla,i,S
(j)
exp
�

where
�
(S(j)

pla,i,P
(j)
i)

 K
i=1 = fq

�
S(j)

past
�
, j = 1, . . . ,n,

�
S(j)

past,S
(j)
exp}n

j=1 ⇠ D .
(3)

Note that when K = 1, the ADE and the FDE across the
dataset is the ADE and the FDE between the ground-
truth and the most likely trajectory.

• Missing Rate (MR): the percentage of the cases when
FDE is greater than 2 meters.

B. Neural network architecture
The paper [14] has proposed a novel neural network

architecture and has demonstrated the superior performance
of such an architecture for prediction tasks on the Argoverse
dataset [19]. In this paper, we adapt this architecture for both
prediction and control tasks on the INTERACTION dataset
[5]. INTERACTION consists data of interactive scenarios in
complex environments, and is thus a more suitable evaluation
testbed for an interactive policy. INTERACTION is recorded
from real-world experiences. Specifically, the training data
for the NN policy is the training sets of the “roundabout”
environment and the “unsignaled intersection” environment
in INTERACTION, consisting of 101,681 input-target pairs
in total. The validation data is from the same environments,
consisting of 17,853 pairs in total. The training inputs are the
trajectories of all agents over the past 10 time steps (Hpast =
10), and the targets are the trajectories of the controlled agent
in the future 30 time steps (Hpla = 30). The neural network
generates candidate trajectories of the ego vehicle and a
confidence level for each candidate trajectory. As shown in
Figure 2, The neural network consists of the following four
subnetworks: a MapNet, an ActorNet, a FusionNet, and a
prediction header. In each subnetwork, layer normalization
and a rectified linear unit (ReLU) activation function and is
applied after each layer.

MapNet is a LaneGCN module, a modified graph convo-
lutional network (GCN) tailored specifically for autonomous
driving applications. LaneGCN extracts features from the
map graph. A traditional GCN also encodes connectivities

but is invariant to orientations: the directional information be-
tween two nodes will be lost. LaneGCN encodes directional
information by incorporating four graphs, representing the
connectivities between nodes in the front, rear, left, and right
directions, respectively. The center points of lane sections
are represented as the graph nodes, and the connectivities
between the lane sections along a specific direction are
represented as the graph edges in the corresponding graph.

ActorNet consists of several one-dimensional convolu-
tional (Conv1d) blocks and feature pyramid network (FPN)
blocks. The inputs to the ActorNet are the trajectories of
the past Hpast time steps of all agents in the environment.
ActorNet is compatible with an arbitrary Hpast. The Conv1d
and Attention blocks extract features with a fixed dimension
of 128 (this dimension is a hyperparameter of LaneGCN)
from the past trajectories.

FusionNet consists of several attention blocks. The inputs
to the FusionNet are the features extracted by the Map-
Net and the ActorNet. The FusionNet consists of another
LaneGCN block and several attention blocks, and allows the
map information to interact with the agent states.

The prediction header is a residual block that takes the
features encoded by the FusionNet as inputs and outputs
the K most probable future trajectories of all agents in the
environment over the next Hpla timesteps. The header also
provides the confidence of each candidate trajectory. The
trajectories {Spla,i}K

i=1 corresponding to the controlled agent
are the outputs of the entire policy. As in [14], during the
training phase, we optimize the NN policy to mimic the
target expert trajectories Sexp in the dataset. We first define
a regression loss function and a classification loss function
as below for each j:

`cls

⇣
{P(j)

i }K
i=1

⌘
:=

1
K �1 Â

i6=î

max
n

0,P(j)
i �P(j)

î j
+ e

o
,

`reg

⇣
{S(j)

pla,i}
K
i=1,S

(j)
exp

⌘
:=

1
Hpla

Hpla

Â
h=1

d
⇣

s(j,h)
pla,î j

� s(j,h)
exp

⌘

where î j is defined as arg mini=1,...,K FDE
⇣

S(j)
pla,i,S

(j)
exp

⌘
. Note

that `cls is the max-margin loss, and e is a preset margin
hyperparameter. Furthermore, for a vector p, the function
d(p) is defined as the following:

d(p) :=

(
1
2kpk2

2 if kpk1 < 1,
kpk1 � 1

2 otherwise,

which is the smoothed `1 loss.
The training formulation of the NN policy is the optimiza-

tion problem

min
q

1
n

n

Â
j=1

`reg

⇣
{S(j)

pla,i}
K
i=1,S

(j)
exp

⌘
+

1
n

n

Â
j=1

`cls

⇣
{P(j)

i }K
i=1

⌘
,

where
�
(S(j)

pla,i,P
(j)
i)

 K
i=1 = fq

�
S(j)

past
�
, j = 1, . . . ,n.

C. From neural network to closed-loop controls

In the controls setting, at each time step t, a control
trajectory S(t)ctrl is generated, and its first coordinate decides

the location of the controlled agent at time step t + 1. We
assume to have a perfect actuator that allows the controlled
agent to precisely follow S(t)ctrl. Since the NN policy takes
the trajectories over the past Hpast time steps as the input,
the first Hpast time steps must be controlled by an expert.
Therefore, the control policy uses

S(t)ctrl = S(t)exp, t = 1, . . . ,Hpast, (4)

where Sexp is produced by an expert planning algorithm.
Starting from t = Hpast+1, the neural network trajectories

become available. To ensure policy stability, we smooth
the neural network trajectories with the previous executed
control trajectory. In later parts of this paper, we will show
that such a smoothing procedure alleviates the distributional
shift problem inherent to imitation learning, and is crucial
to the performance of the NN policy. At each time step t,
the NN policy generates the candidate trajectories {S(t)pla,i}K

i=1,
where K is the number of the candidate trajectories. The
smoothed trajectory is generated using the following mixing
recursion:

S(t)smo,i = aS(t)pla,i +(1�a)S(t�1)
ctrl , 8t > Hpast, 8i, (5)

where a 2 [0,1] is a hyperparameter that controls the strength
of the smoothing operation. The mixing procedure of the tra-
jectories is specifically defined as the following: Since S(t�1)

ctrl
is generated at time step t�1, it should be shifted backward
by one step. Therefore, s(t,h)smo,i is a convex combination of
s(t,h)pla,i and s(t�1,h+1)

ctrl .1

Next, the best smoothed candidate trajectory is selected
via the discrete optimization problem:

S?(t)smo = min
S(t)2{S(t)smo,i}K

i=1

c(S(t)), 8t > Hpast,

where c(S(t)) :=
Hpla

Â
h=1

���s(t,h)� s(t,h)exp

���
2

2
.

After training on the INTERACTION dataset, the NN
policy learns to produce trajectories that resemble the target
trajectories in the dataset. However, LaneGCN is not perfect
when trained with only offline data, because it does not
have the knowledge about how its trajectories interact with
the environment. To gain such knowledge and improve
closed-loop performance, the NN policy needs to learn from
closed-loop data, where its trajectories affect future states.
To ensure safety and stability throughout this procedure,
an expert takes over the control task when the NN policy
generates an poor trajectory. A trajectory is considered poor
if it is dynamically infeasible or differs noticeably from the
reference. Specifically,

S(t)ctrl =

(
S?(t)smo if I

�
A(S?(t)smo)

�
= 0,

S(t)exp if I
�
A(S?(t)smo)

�
> 0,

8t > Hpast, (6)

1For example, the first step of S(t)smo,i should be a convex combination of
the fist step of S(t)pla,i and the second step of S(t�1)

ctrl .

where A(S) is an event that indicates that the trajectory S is
poor, and I(·) is the indicator function. In the next section,
we will discuss the design of the event A(S).

Fig. 3. When a smoothed neural network trajectory has high quality
(the complement of A happens), it is used to control the vehicle. When
A happens, the vehicle is controlled by a pseudo-expert trajectory generated
by a non-learning-based algorithm, and this pseudo-expert trajectory is then
added to the training set to perform DAgger.

IV. FAILURE IDENTIFICATION

To evaluate the trajectory generated by policy and apply
DAgger, the simulation need to identify the failure of the
policy. In this section, we propose a two-layer processes for
failure identification. First, as implemented in [20], a classi-
fier predicts whether a trajectory will deviate too much from
the pseudo-expert trajectory. This classifier is trained on the
training set of INTERACTION. Then, when a trajectory is
fed into the simulator, a rule-based error threshold identifies
potential failures in term of maintaining close loop stability.
When a failure is identified, the simulator switches to the
pseudo-expert trajectory.

A. Failure Classifier
The work [20] has shown that a dedicated classifier

can achieve a higher successful rate of identifying poor
trajectories, compared with methods such as ensemble. In
this work, we use a classifier with a similar architecture as
the NN policy, with the detailed architecture illustrated in
Figure 4. Compared to the NN policy, the classifier differs
in the following:

• An additional ActorNet extracts features from the neural
network trajectory produced at the current time step.

• The classification header has one 1-dimensional residual
block with a single output.

The failure classifier is trained after the training of the NN
policy has completed. The classifier performs binary classi-
fication, where 1 denotes that the neural network trajectory
is poor, and 0 denotes that the complement. The training
inputs for the classifier are the past trajectories of all agents
in the environment, as well as the neural network trajectories
of the controlled agent. The training label corresponding

ActorNet
1D CNN + FPN

MapNet
LaneGCN Block

FusionNet

Attention

LaneGCN

Attention

Attention

Classification Header

Past trajectories
of all agents

Lane Graph
representing
the map

1D ResNetBlock

ActorNet2
1D CNN + FPN

Predicted
trajectory of the
controlled agent

Concatenate

Fig. 4. The architecture of the failure classifier.

to a neural network trajectory S(j)
pla,i for the classifier is

I
�
FDE(S(j)

pla,i,S
(j)
exp)> 1 meter

�
. The classifier is trained using

the binary cross-entropy loss, with the optimizer chosen to
be Adam.

The failure classifier trained on the training set of the
INTERACTION dataset achieves 100% evaluation accuracy
on the validation set.

B. Error Indicator

The rule based error threshold is designed for detecting
the closed loop unstable trajectory and collision on line
boundary.

The error indicator function for collision on line boundary
is defined as

IBou(S
(t)
smo,i) =

(
• if 9h s. t.

��s(t,h)smo,i � s(t,h)ref,i
��

2 >W

0 otherwise,
(7)

where s(t,h)ref,i denotes the coordinate of the closest point to
s(t,h)smo,i on the reference path and W is the feasible width of
current line.

The error indicator function for closed-loop instablility is
defined as

IClo(S
(t)
smo,i) =

(
• if 9h s. t.

��s(t,h)smo,i � s(t�1,h+1)
ctrl

��
2 > Tol,

0 otherwise,
(8)

where Tol is the distance tolerance threshold.
When any of the above indicator functions is •, the input

trajectory will be signed as a failed trajectory. When all
candidate trajectories are marked as failed, the simulator
switches to expert trajectory and the expert planner takes
over.

V. PSEUDO-EXPERT FOR IMITATION

DAgger is a powerful method that tackles the distribution
shift problem of imitation learning. It augments the training
set with data collected in the online setting. Unfortunately,
for autonomous driving tasks, it is prohibitively hard for
human to relabel the whole trajectory in a online setting.
To this end, we propose a pseudo-expert based on the A⇤

planning algorithm.

A. Path Correction
As the vehicle may not drive on the defined reference path

in general, a path planning method is needed for generating a
smoothed correction path back to the reference path before
motion planning. Therefore, we combine the pure pursuit
controller [4] and the kinematic bicycle model to ensure the
smoothness and the kinematic feasibility of the trajectories.
This method has been evaluated in [1].

The kinematic bicycle model can be written as

ẋ = vcos(y +b)
ẏ = vsin(y +b)

ẏ =
v
lr

sin(b)

b = tan�1
✓

lr
l f + lr

tan(d f)

◆
(9)

where x and y are the coordinates of the center of mass, y
is the inertial heading, v is the speed of the vehicle, lr and
l f represent the distance from the center of the mass of the
vehicle to the front and rear axles, respectively. Moreover,
b is the angle between the current velocity of the center of
mass and the longitudinal axis of the car, d f is the front
steering angle.

With the d f provided by pure pursuit controller, by giving
a small constant speed v, we can generate a smoothed path
by updating the kinematic bicycle model.

B. A? Rough Motion Planning
The search space is defined as a three-dimension space

including time, velocity, and longitudinal distance. A single
node ni in the search space can be represented as (si,vi, ti),
where si is the coordinate of the vehicle on its reference
path, vi is the longitudinal velocity of the vehicle, ti is the
time step. Therefore, the beginning node and goal node can
be represented as (s0,v0,0) and (sg,vg, tg) respectively. Note
here, since normally, when driving on the reference path, it is
not necessary to have a certain position as the goal, the goal
state can be relaxed as (sH ,vH ,H), where H is the planning
horizon, that is any state at the end of the planning horizon.

The transition between nodes is defined as applying the
acceleration a along the reference path. The next node of ni,
denoted as ni+1 is defined by

ni+1 = (si +
1
2

aDt2,vi +aDt, ti +Dt) (10)

Here Dt is the minimum time interval. we discretized accel-
eration as a 2 {�2,�1,0,1,2}m/s2. Such discretization was
used in [2] which well covered normal human actions. The
cost function C for the transition between nodes is defined
as

C(ni,a,n j) = w1a2+w2k(si+1)v2
i+1

+w3(vi+1 � vd)
2 + ICol(ni+1)

(11)

where k(si+1) is the curvature of the reference path at si+1,
vd is the desired speed, ICol(ni+1) is a indicator function that
is • if collision happens at ni+1 and 0 otherwise. Therefore,
the fist and second terms in cost function penalizes large

longitudinal and lateral acceleration for comfort. The third
term encourage the vehicle to follow an appropriate speed.

C. Trajectory Smoothing
To reduce the sampling time and smooth previous searched

rough motion, a smoothing process is needed. We formulate
it as an optimization problem. The optimization variables are
s̃1, s̃2, ..., s̃M where the the current minimum time interval Dts
is defined by Dt = nDts. Therefore, the smoothed velocity
ṽ, acceleration ã and jerk j̃ at each time step can be
approximated by

ṽ(kDts) =
s̃k � s̃k�1

Dts

ã(kDts) =
ṽk � ṽk�1

Dts

j̃(kDts) =
ãk � ãk�1

Dts

(12)

which are linear function of s̃k. Therefore the optimization
can be formulated as a quadratic programming as following

min
s1,...,sM

Â
t=kDts

(w̃1ã(t)2 + w̃2 j̃(t)2)+ w̃3 Â
t=kDt

(s̃(t)� s(t))2

s.t. Ass bs
(13)

where the Ass b are constructed via linear hard constraints,
such as longitudinal acceleration amin < ã < amax and the
collision avoidance constraints derived from ICol(ni+1). With
the smoothed the trajectory points, We then apply the cubic
spline to generate the function of expert trajectory SExp(t).

VI. EXPERIMENTS

To evaluate the proposed method, several open-loop and
closed-loop experiments were conducted and are discussed
in this section. We first conducted several open-loop model
evaluation experiments which evaluate the model as a pre-
dictor to predict the human drivers’ future trajectory. Then,
we use the model as the planner for the robot vehicle in
our simulator. We then collect the data from the simulator
and apply the DAgger and evaluate the DAgger model in the
same pipeline.

A. Open-loop model evaluation
To evaluate the ability of the model to produce the human

behavior like trajectory, we first conducted the open-loop
experiments. In these experiments, we use the validation
set which we split from the original dataset to initial the
simulation. The vehicles in the simulation were driven by
data. We then used the model to generate the trajectories
and compared them with the data.

Table II shows the result of the open loop evaluation of the
proposed method and the baseline which is the current first
on the leader board. As it can be seen in the table, the model
used in this work can generate similar trajectories as human
drivers. Meanwhile, after applying DAgger with pseudo-
expert, every metric didn’t change much, which means even
we are not using human experts the model doesn’t lose its
generality on reproducing human behavior.

Model MinADE MinFDE MR

baseline 0.2020 0.5902 0.0284
Before DAgger (K = 6) 0.1595 0.4397 0.0149

DAgger Iteration 1 (K = 6) 0.1615 0.4476 0.0160
DAgger Iteration 2 (K = 6) 0.1635 0.4513 0.0173
DAgger Iteration 3 (K = 6) 0.1620 0.4494 0.0160
DAgger Iteration 4 (K = 6) 0.1614 0.4457 0.0162

Before DAgger (K = 1) 0.3474 1.1307 0.1436
DAgger Iteration 1 (K = 1) 0.3549 1.1519 0.1482
DAgger Iteration 2 (K = 1) 0.3536 1.1480 0.1498
DAgger Iteration 3 (K = 1) 0.3512 1.1429 0.1433
DAgger Iteration 4 (K = 1) 0.3509 1.1389 0.1462

TABLE II
EXPERIMENT RESULTS WITH LANEGCN-ACTOR-FUSIONNET NN

POLICY.

B. Close-loop experiment

In this subsection, the proposed method was evaluated
in the closed-loop simulation. We did the experiment in
four different settings that are model without closed-loop
smoothing; DAggered model without closed-loop smoothing;
model with closed-loop smoothing; DAggered model with
closed-loop smoothing. We compared the number of failure
frames of each setting and a detailed discussion is provided.

In these experiments, we set the time step as 0.1 second.
The total simulation length of the intersection scenario and
the roundabout scenario are 52 and 64 steps. At each step,
the simulator will call the proposed framework to generate
the planning trajectory.

Model Smoothing Number of failure case

Original False 49
DAgger False 47
Original True 8
DAgger True 0

TABLE III
CLOSE-LOOP SIMULATION ON INTERSECTION SCENARIO.

As it can be seen in Table III, the original model without
the smoothing layer failed in the most of steps. After DAgger,
the model without smoothing didn’t receive considerable
improvement. Meanwhile, after applying the smoothing pro-
cess, the performance received a dramatic improvement.
When the smoothing process was used, the DAggered model
can help more.

We further looked into this phenomenon by plotting the
planned trajectory at each step.

Figure 5 and Figure 6 show the closed-loop simulation of
the original model without the smoothing layer. As it can be
seen, the model can generate good trajectories at first update.
However, as soon as the new state counted into the input, the
model failed immediately.

Figure 7 and Figure 8 show the closed loop simulation of
the original model with the smoothing layer. As it can be
seen, with the smoothing layer, the model can keep generate
good trajectories.

Fig. 5. Close-loop Simulation on Intersection Scenario by Original Model
Without Smoothing

Fig. 6. Close-loop Simulation on Roundabout Scenario by Original Model
Without Smoothing

Fig. 7. Close-loop Simulation on Intersection Scenario by Original Model
With Smoothing

Fig. 8. Close-loop Simulation on Roundabout Scenario by Original Model
With Smoothing

We conclude the reason for this phenomenon on the
sense of close loop stability. Without the smoothing layer,
the trajectory generated in different steps may have much
difference as the reaction of other agents are also changing.
Therefore, the historical states may have a great behavior
switch, which causes the model to fail as this switch doesn’t
really happen in human behavior. After the smoothing layer
is applied, the trajectory keeps some information of the
last plan, which smooth the behavior change. Therefore, the
input historical states will not shift from the dataset too
much. As the smoothing layer solve the most of distribution
shifting problem, the DAgger model can fix the left shifting
problem easily. Therefore, while the performance of the
model without smoothing wasn’t improved much by applying
DAgger, the smoothed model can benefit much from it.

VII. CONCLUSIONS

In this work, we implement an imitation learning frame-
work to imitate the human behavior model for interactive
autonomous driving simulation. We establish a simulator
for closed-loop simulation and proposed an A? planning
based pseudo-expert for DAgger. We evaluate our framework
on the reactive simulation and conclude the reason for the
failure of the imitation model. The results of the simulations
demonstrate the effectiveness of the proposed method. The
future work includes exploring a better method for ensuring
the closed-loop stability of the imitation model and the
study of better metrics for evaluating the effectiveness of
the intended sub-optimal reactive model such as the human
behavior model and critical agents model.

REFERENCES

[1] Z. Li, W. Zhan, L. Sun, C.-Y. Chan, and M. Tomizuka, “Adaptive
sampling-based motion planning with a non-conservatively defensive
strategy for autonomous driving,” IFAC-PapersOnLine, vol. 53, no. 2,
pp. 15 632–15 638, 2020.

[2] C. Hubmann, M. Aeberhard, and C. Stiller, “A generic driving strategy
for urban environments,” in 2016 IEEE 19th International Conference
on Intelligent Transportation Systems (ITSC). IEEE, 2016, pp. 1010–
1016.

[3] M. Treiber, A. Hennecke, and D. Helbing, “Congested traffic states in
empirical observations and microscopic simulations,” Physical review
E, vol. 62, no. 2, p. 1805, 2000.

[4] R. C. Coulter, “Implementation of the pure pursuit path tracking
algorithm,” Carnegie-Mellon UNIV Pittsburgh PA Robotics INST,
Tech. Rep., 1992.

[5] W. Zhan, L. Sun, D. Wang, H. Shi, A. Clausse, M. Naumann, J. Kum-
merle, H. Konigshof, C. Stiller, A. de La Fortelle et al., “Interaction
dataset: An international, adversarial and cooperative motion dataset
in interactive driving scenarios with semantic maps,” arXiv preprint
arXiv:1910.03088, 2019.

[6] J. Lee, “A survey of robot learning from demonstrations for human-
robot collaboration,” arXiv preprint arXiv:1710.08789, 2017.

[7] A. Alahi, K. Goel, V. Ramanathan, A. Robicquet, L. Fei-Fei, and
S. Savarese, “Social lstm: Human trajectory prediction in crowded
spaces,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 961–971.

[8] Y. Chai, B. Sapp, M. Bansal, and D. Anguelov, “Multipath: Multiple
probabilistic anchor trajectory hypotheses for behavior prediction,”
arXiv preprint arXiv:1910.05449, 2019.

[9] D. A. Pomerleau, “Alvinn: An autonomous land vehicle in a neural
network,” CARNEGIE-MELLON UNIV PITTSBURGH PA ARTIFI-
CIAL INTELLIGENCE AND PSYCHOLOGY . . . , Tech. Rep., 1989.

[10] S. Ross and D. Bagnell, “Efficient reductions for imitation learning,”
in Proceedings of the thirteenth international conference on artificial
intelligence and statistics. JMLR Workshop and Conference Pro-
ceedings, 2010, pp. 661–668.

[11] S. Ross, G. Gordon, and D. Bagnell, “A reduction of imitation learning
and structured prediction to no-regret online learning,” in Proceedings
of the fourteenth international conference on artificial intelligence and
statistics. JMLR Workshop and Conference Proceedings, 2011, pp.
627–635.

[12] Y. Pan, C.-A. Cheng, K. Saigol, K. Lee, X. Yan, E. Theodorou, and

B. Boots, “Agile autonomous driving using end-to-end deep imitation
learning,” arXiv preprint arXiv:1709.07174, 2017.

[13] A. Prakash, A. Behl, E. Ohn-Bar, K. Chitta, and A. Geiger, “Exploring
data aggregation in policy learning for vision-based urban autonomous
driving,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2020, pp. 11 763–11 773.

[14] M. Liang, B. Yang, R. Hu, Y. Chen, R. Liao, S. Feng, and R. Urta-
sun, “Learning lane graph representations for motion forecasting,” in
ECCV, 2020.

[15] X. Huang, S. G. McGill, J. A. DeCastro, L. Fletcher, J. J. Leonard,
B. C. Williams, and G. Rosman, “Diversitygan: Diversity-aware ve-
hicle motion prediction via latent semantic sampling,” IEEE Robotics
and Automation Letters, vol. 5, no. 4, pp. 5089–5096, 2020.

[16] H. Cui, V. Radosavljevic, F.-C. Chou, T.-H. Lin, T. Nguyen, T.-K.
Huang, J. Schneider, and N. Djuric, “Multimodal trajectory predictions
for autonomous driving using deep convolutional networks,” in 2019
International Conference on Robotics and Automation (ICRA). IEEE,
2019, pp. 2090–2096.

[17] N. Djuric, V. Radosavljevic, H. Cui, T. Nguyen, F.-C. Chou, T.-H. Lin,
and J. Schneider, “Short-term motion prediction of traffic actors for
autonomous driving using deep convolutional networks,” 2018.

[18] J. Mercat, T. Gilles, N. El Zoghby, G. Sandou, D. Beauvois, and
G. P. Gil, “Multi-head attention for multi-modal joint vehicle motion
forecasting,” in 2020 IEEE International Conference on Robotics and
Automation (ICRA). IEEE, 2020, pp. 9638–9644.

[19] M. Chang, J. Lambert, P. Sangkloy, J. Singh, S. Bak, A. Hartnett,
D. Wang, P. Carr, S. Lucey, D. Ramanan, and J. Hays, “Argoverse:
3d tracking and forecasting with rich maps,” in IEEE Conference on
Computer Vision and Pattern Recognition, 2019.

[20] L. Sun, X. Jia, and A. D. Dragan, “On complementing end-
to-end human motion predictors with planning,” arXiv preprint
arXiv:2103.05661, 2021.

