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* Large Language Models (LLMs) are often alignhed to
human intentions.

* “LLM jailbreaks” proved the alignment to be fragile.

* By concatenating a malicious prompt, we can induce
unexpected/unsafe behaviors from LLMs.

* We argue that a main threat of LLM jailbreaking will
Instead concern conversational search engines (CSE).

e CSEs use LLMs to summarize/interpret web contents with
the Retrieval-Augmented Generation (RAG) architecture.

Contributions

* Formalize the adversarial promptinjection problem in
the conversational search setting.

* Collect and open-source “RAGDOLL” dataset of real-
world consumer product websites to study this problem.

* Disentangle the impacts of product name, document

content, and context position on RAG ranking tendencies.

 Show that RAG models can be reliably fooled to pro-

mote certain websites using adversarial prompt injection.

* Theinjections can be embedded in website contents.

* These attacks transfer from handcrafted RAG templates to
production conversational engines such as perplexity.ai.

The RAGDOLL Dataset

* A dataset of real-world consumer product webpages.
* Focus on official websites, not third-party sales sites.

* 5 commodity groups:
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Problem Formulation
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» The ranking score for each product p; is s;".

« If p; isthe j™ product in response R, then s;°

=n—j+ 1.

* Appearing early In the response means high score!

Attacker objective for promoting product p;
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E.g., constraint on prefix length, etc.
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Experiments
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* What affects the output
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product ranking the most?

1. Input context position;
2. Product name;

3. Webpage content

(excluding product name).

F-Statistic
N
(@»)

N
-
1

¢ 4.”*

Product  Document Context

name

position

Personal Home

Care Electronics Appliances
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model per brand, 1147 webpages in total.
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 Experiments use a subset with exactly 8 brands per product

and 1 model per brand.

* LLM-powered collection pipeline:
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* Attack algorithm: TAP
(Tree of Attacks with Pruning).
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* [njection examples:
See Appendix C In our paper.
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* Injections can transfer
between LLMs.
E.g., GPT-4T injections can
also attack Sonal Large.
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Natural average ranking score
Average product rankings before/after
HTML prompt injection.

* Sonar Large Online prompts are transferred from GPT-4T.
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