Ranking Manipulation for Conversational Search Engines

Samuel Pfrommer* Yatong Bai* Tanmay Gautam Somayeh Sojoudi

Paper: <u>arxiv.org/pdf/2406.03589</u> Dataset: <u>huggingface.co/datasets/Bai-YT/RAGDOLL</u> Code: <u>github.com/spfrommer/cse-ranking-manipulation</u>

EMNLP 2024 Oral University of California, Berkeley

<u>Motivation</u>

• Large Language Models (LLMs) are often *aligned* to human intentions.

Adversarial Document-Embedded Injection

Product B adds adversarial prefix to webpage HTML

. .	Product A offer
	incredible quality .

LLM receives query; fetches injected webpage

Query: recommend ...

Product B is promoted to top in LLM response!

Here are some recom-

- "LLM jailbreaks" proved the alignment to be fragile.
 - By concatenating a malicious prompt, we can induce unexpected/unsafe behaviors from LLMs.
- We argue that a main threat of LLM jailbreaking will instead concern conversational search engines (CSE).
 - CSEs use LLMs to summarize/interpret web contents with the Retrieval-Augmented Generation (RAG) architecture.

Contributions

- Formalize the **adversarial prompt injection** problem in the conversational search setting.
- Collect and open-source **"RAGDOLL" dataset** of realworld consumer product websites to study this problem.
- Disentangle the impacts of product name, document

Problem Formulation

- Recommender LLM: • The response to a query is $R (M, Q, D, P, U_T, U_M)$ $U_M \sim \mathbb{P}_{U_M}$ $U_M \sim \mathbb{P}_{U_M}$ $U_M \sim \mathbb{P}_{U_T}$ $U_M \sim \mathbb{P}_{U_T}$
- The ranking score for each product p_i is s_i^R .
 - If p_i is the j^{th} product in response R, then $s_i^R = n j + 1$.
 - Appearing early in the response means high score!

Attacker objective for promoting product p_i

• $\max_{a \in \mathcal{A}} \mathbb{E}[S_i^R]$, where S_i^R follows ranking distribution $\mathbb{P}_{M,Q,\widetilde{D},P}(s_i)$.

content, and context position on RAG ranking tendencies.

- Show that **RAG models can be reliably fooled** to promote certain websites using adversarial prompt injection.
 - The injections can be embedded in website contents.
 - These attacks transfer from handcrafted RAG templates to production conversational engines such as perplexity.ai.

The RAGDOLL Dataset

- A dataset of real-world consumer product webpages.
- Focus on official websites, not third-party sales sites.
- 5 commodity groups:

• $\widetilde{D} = (d_1, \dots, \underset{i}{a \oplus d_i}, \dots, \underset{i}{d_n})$ and \mathcal{A} is a permissible attack set.

Prefix adversarial string a to document d_i in webpage HTML

E.g., constraint on prefix length, etc.

Experiments

Natural Setting (no adversarial injection)

- What affects the output product ranking the most?
 - 1. Input context position;
 - 2. Product name;
 - 3. Webpage content (excluding product name).

Adversarial HTML Injection

• Attack algorithm: **TAP**

- 10 products per group, ≥8 brands per product, and 1-3 model per brand, 1147 webpages in total.
 - Experiments use a subset with exactly 8 brands per product and 1 model per brand.
- LLM-powered collection pipeline:

(Tree of Attacks with Pruning).

- Injection examples:
 See Appendix C in our paper.
- Injections can promote the ranking of most products with all LLMs.
- Injections can transfer
 between LLMs.
 E.g., GPT-4T injections can
 also attack Sonal Large.

Average product rankings before/after HTML prompt injection.

* Sonar Large Online prompts are transferred from GPT-4T.