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Abstract— Deep learning classifiers have recently found
tremendous success in data-driven control systems. However,
standard learning models often suffer from an accuracy-
robustness trade-off, which is a limitation that must be over-
come in the control of safety-critical systems that require both
high performance and rigorous robustness guarantees. In this
work, we build upon the recent “locally biased smoothing”
method to develop classifiers that simultaneously inherit high
accuracy from standard models and high robustness from
robust models. Specifically, we extend locally biased smoothing
to the multi-class setting, and then overcome its performance
bottleneck by generalizing the formulation to “mix” the outputs
of a standard neural network and a robust neural network. Both
models are pre-trained, and thus our method does not require
additional training. We prove that when the robustness of the
robust base model is certifiable, no alteration or attack within a
closed-form `p radius on an input can result in misclassification
of the mixed classifier; the proposed model inherits the certified
robustness. Moreover, we use numerical experiments on the
CIFAR-10 benchmark dataset to verify that the mixed model
noticeably improves the accuracy-robustness trade-off.

I. INTRODUCTION

In recent years, high-performing machine learning models
have been successfully employed in a range of control settings,
including reinforcement learning for dynamical systems with
uncertainty [1], [2] and self-driving cars [3], [4]. However,
models such as neural networks have been shown to be
vulnerable to adversarial attacks, which are imperceptibly
small input data alterations maliciously designed to cause
failure [5], [6], [7]. For example, both digital and physical
attacks on traffic signs have successfully fooled state-of-
the-art image classifiers [8], [9]. This vulnerability makes
such models unreliable for safety-critical control where
guaranteeing robustness is necessary. In response, “adversarial
training (AT)” [10], [11], [12], [13], [14] has been studied to
alleviate the susceptibility. AT builds robust neural networks
by training on adversarially attacked data.

A parallel line of work focuses on certified (that is,
mathematical proof of) robustness [15], [16], [17]. Among
the most popular of these methods, “randomized smoothing
(RS)” seeks to achieve certified robustness by processing
intentionally corrupted data at test time [18], [19], [20]. RS
has recently been applied to robustify reinforcement learning-
based control strategies [21], [22]. The recent work [23]
has shown that a “locally biased smoothing” method, which
robustifies the model locally based on the particular test
datum, outperforms the traditional data-agnostic RS that uses
globally fixed smoothing noise. However, [23] only focuses
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on binary classification problems, significantly limiting the
applications. Moreover, [23] relies on the robustness of a K-
nearest-neighbor (K-NN) classifier, which suffers from the
lack of representation power when applied to harder problems
and becomes a performance bottleneck.

While some works have shown that there exists a funda-
mental trade-off between accuracy and robustness [24], [25],
recent research has argued that it should be possible to si-
multaneously achieve robustness and accuracy on benchmark
datasets [26]. To this end, variants of AT that improve the
accuracy-robustness trade-off have been proposed, including
TRADES [25], Interpolated Adversarial Training [27], and
many others [28], [29], [30], [31]. However, even with these
improvements, degraded clean accuracy is often an inevitable
price of achieving robustness. Moreover, standard non-robust
models often achieve enormous performance gains by pre-
training on larger datasets, whereas the effect of pre-training
on robust classifiers is less understood and may be less
prominent [32], [33].

This work makes a theoretically disciplined step towards
robustifying models without sacrificing clean accuracy. Specif-
ically, we build upon locally biased smoothing and replace
its underlying K-NN classifier with a robust neural network
that can be obtained via various existing methods. We also
modify how the standard and robust models are “mixed”
accordingly. The resulting formulation, to be introduced
formally in Section III, is a convex combination of the
output of a standard neural network and the output of a
robust neural network. We prove that, when the robust neural
network has a bounded Lipschitz constant or is built via RS,
the mixed classifier also has a closed-form certified robust
radius. More importantly, the proposed method achieves an
empirical robustness level close to that of the robust base
model while approaching the clean accuracy of the standard
base classifier. This desirable behavior significantly improves
the accuracy-robustness trade-off for tasks where standard
models noticeably outperform robust models on clean data.

Note that we do not make any assumptions about how the
standard and robust base models are obtained (can be AT, RS,
or others), nor do we make assumptions on the adversarial
attack type and budget. Thus, our mixed classification scheme
can take advantage of pre-training on large datasets via
the standard base classifier and benefit from ever-improving
robust training methods via the robust base classifier.

II. BACKGROUND AND RELATED WORKS

A. Notations

The `p norm is denoted by ‖·‖p, while ‖·‖p∗ denotes its
dual norm. The matrix Id denotes the identity matrix in Rd×d.

mailto:yatong_bai
mailto:bganderson@berkeley.edu
mailto:sojoudi@berkeley.edu


For a scalar a, sgn(a) ∈ {−1, 0, 1} denotes its sign. For a
natural number c, the set [c] is defined as {1, 2, . . . , c}. For an
event A, the indicator function I(A) evaluates to 1 if A takes
place and 0 otherwise. The notation PX∼S [A(X)] denotes
the probability for an event A(X) to occur, where X is a
random variable drawn from the distribution S . The normal
distribution on Rd with mean x and covariance Σ is written
as N (x,Σ). We denote the cumulative distribution function
of N (0, 1) on R by Φ and write its inverse function as Φ−1.

Consider a model g : Rd → Rc, whose components are
gi : Rd → R, i ∈ [c], where d is the dimension of the input
and c is the number of classes. In this paper, we assume
that g(·) does not have the desired level of robustness, and
refer to it as a “standard model”, as opposed to a “robust
model” which we denote as h(·). We consider `p norm-
bounded attacks on differentiable neural networks. A classifier
f : Rd → [c], defined as f(x) = arg maxi∈[c] gi(x), is
considered robust against adversarial attacks at an input datum
x ∈ Rd if it assigns the same class to all perturbed inputs
x+ δ such that ‖δ‖p ≤ ε, where ε ≥ 0 is the attack radius.

B. Related Adversarial Attacks and Defenses

The fast gradient sign method (FGSM) and projected
gradient descent (PGD) attacks based on differentiating the
cross-entropy loss have been considered the most classic and
straightforward attacks [34], [11]. However, they have been
shown to be too weak, as defenses that are only designed
against these attacks can be easily circumvented [35], [36],
[37]. To this end, various attack methods based on alternative
loss functions, Expectation Over Transformation, and black-
box perturbations have been proposed. Such efforts include
AutoAttack [38], adaptive attack [39], and many others.

On the defense side, while AT [34] and TRADES [25] have
seen enormous success, such methods are often limited by a
significantly larger amount of required training data [40] and a
decrease in generalization capability. Initiatives that construct
more effective training data via data augmentation [41], [42]
and generative models [43] have successfully produced more
robust models. Improved versions of AT [44], [45] have also
been proposed.

Previous initiatives that aim to enhance the accuracy-
robustness trade-off include using alternative attacks during
training [46], appending early-exit side branches to a single
network [47], and applying AT for regularization [48]. More-
over, ensemble-based defenses, such as random ensemble
[49] and diverse ensemble [50], [51], have been proposed.
In comparison, this work considers two separate classifiers
and uses their synergy to improve the accuracy-robustness
trade-off, achieving higher performances.

C. Locally Biased Smoothing

Randomized smoothing, popularized by [18],
achieves robustness at test time by replacing
f(x) = arg maxi∈[c] gi(x) with a smoothed classifier
f̃(x) = arg maxi∈[c] Eξ∼S [g(x+ ξ)], where S is a
smoothing distribution. A common choice for S is a
Gaussian distribution.

The authors of [23] have recently argued that data-
invariant RS does not always achieve robustness. They have
shown that in the binary classification setting, RS with an
unbiased distribution is suboptimal, and an optimal smoothing
procedure shifts the input point in the direction of its true
class. Since the true class is generally unavailable, a “direction
oracle” is used as a surrogate. This “locally biased smoothing”
method is no longer randomized and outperforms traditional
data-blind RS. The locally biased smoothed classifier, denoted
hγ : Rd → R, is obtained via the deterministic calculation

hγ(x) = g(x) + γh(x)‖∇g(x)‖p∗,

where h(x) ∈ {−1, 1} is the direction oracle and γ ≥ 0 is a
trade-off parameter. The direction oracle should come from
an inherently robust classifier (which is often less accurate).
In [23], this direction oracle is chosen to be a one-nearest-
neighbor classifier.

III. USING A ROBUST NEURAL NETWORK AS THE
SMOOTHING ORACLE

Since locally biased smoothing was designed for binary
classification problems, we first extend it to the multi-class
setting. To achieve this, we treat the output hγi (x) of each
class independently, giving rise to:

hγsmo1,i(x) := gi(x) + γhi(x)‖∇gi(x)‖p∗, i ∈ [c]. (1)

Note that if ‖∇gi(x)‖p∗ is large for some i, then hγsmo1,i(x)
can be large even if both gi(x) and hi(x) are small, potentially
leading to incorrect predictions. To remove the effect of
the magnitude difference across the classes, we propose a
normalized formulation as follows:

hγsmo2,i(x) :=
gi(x) + γhi(x)‖∇gi(x)‖p∗

1 + γ‖∇gi(x)‖p∗
, i ∈ [c]. (2)

The parameter γ adjusts the trade-off between clean
accuracy and robustness. When γ = 0, it holds that
hγsmo2,i(x) ≡ gi(x) for all i. When γ → ∞, it holds that
hγsmo2,i(x)→ hi(x) for all x and all i.

With the mixing procedure generalized to the multi-class
setting, we now discuss the choice of the smoothing oracle
hi(·). While K-NN classifiers are relatively robust and can
be used as the oracle, their representation power is too weak.
On the CIFAR-10 image classification task [52], K-NN only
achieves around 35% accuracy on clean test data. In contrast,
an adversarially trained ResNet can reach 50% accuracy on
attacked test data [34]. This lackluster performance of K-NN
becomes a significant bottleneck in the accuracy-robustness
trade-off of the mixed classifier. To this end, we replace the
K-NN model with a robust neural network. The robustness of
this network can be achieved via various methods, including
AT, TRADES, and RS.

Further scrutinizing (2) leads to the question of whether
‖∇gi(x)‖p∗ is the best choice for adjusting the mixture of
g(·) and h(·). In fact, this gradient magnitude term is a result
of the assumption that h(x) ∈ {−1, 1}, which is the setting
considered in [23]. Here, we no longer have this assumption.
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Fig. 1: Comparing the “attacked accuracy versus clean
accuracy” curve for various options for Ri(x). “Softmax”
represents the formulation that use the probabilities for g(·)
and h(·) followed by a natural log on the assembled hγsmo3,i(·).

Instead, we assume both g(·) and h(·) to be differentiable.
Thus, we further generalize the formulation to

hγsmo3,i(x) :=
gi(x) + γRi(x)hi(x)

1 + γRi(x)
, i ∈ [c], (3)

where Ri(x) is an extra scalar term that can potentially depend
on both∇gi(x) and∇hi(x) to determine the “trustworthiness”
of the base classifiers. Here, we empirically compare four op-
tions for Ri(x), namely, 1, ‖∇gi(x)‖p∗, ‖∇maxj gj(x)‖p∗,
and ‖∇gi(x)‖p∗‖∇hi(x)‖p∗ .

Another design question is whether g(·) and h(·) should
be the pre-softmax logits or the post-softmax probabilities.
Note that since most attack methods are designed based on
the logits, incorporating the softmax function into the model
may result in gradient masking, an undesirable phenomenon
that makes it hard to properly evaluate the proposed method.
Thus, we have the following two options that make the mixed
model compatible with existing gradient-based attacks:

1) Use the logits for both g(·) and h(·).
2) Use the probabilities for both g(·) and h(·), and then

convert the mixed probabilities back to logits. The
required “inverse-softmax” operator is given simply by
the natural logarithm, and does not change the prediction.

In Fig. 1, we compare the different choices for Ri(x) by
visualizing the accuracy-robustness trade-off. Based on this
“clean accuracy versus PGD10-attacked accuracy” plot, where
PGDT denotes T -step PGD, we conclude that Ri(x) = 1
gives the best accuracy-robustness trade-off, and g(·) and h(·)
should be the probabilities.

In later sections, we will offer additional theoretical
and empirical justifications for this choice. Specifically, in
addition to the set of base classifiers (a pair of standard and
adversarially-trained ResNet18s) considered in Fig. 1, we
provide examples in Section IV-C using alternative model
architectures, different methods to train the robust base
classifiers, and various attack budgets, all of which lead

to the same best choice for Ri(x). With these design choices
implemented, the formulation (3) can be re-parameterized as

hαi (x) := log
(
(1− α)gi(x) + αhi(x)

)
, i ∈ [c], (4)

where α = γ
1+γ ∈ [0, 1]. We take hα(·) in (4), which

outputs the natural logarithm of a convex combination of the
probabilities g(·) and h(·), as our proposed mixed classifier.

A. Theoretical Certified Robust Radius

In this section, we derive certified robust radii for hα(·)
introduced in (4), given in terms of the robustness properties
of h(·) and the mixing parameter α. The results ensure that
despite being more sophisticated than a single model, hα(·)
cannot be easily conquered, even if an adversary attempts to
adapt its attack methods to its structure. Such guarantees are
of paramount importance for reliable deployment in safety-
critical control applications. Since we use probabilities for
g(·) and h(·), it holds that 0 ≤ gi(·) ≤ 1 and 0 ≤ hi(·) ≤ 1
for all i. To facilitate the proofs, we introduce the following
generalized notion of certified robustness.

Definition 1. Consider an arbitrary input x ∈ Rd and let
y = arg maxi hi(x), µ ∈ [0, 1], and r ≥ 0. Then, h(·) is said
to be certifiably robust at x with margin µ and radius r if
hy(x+ δ) ≥ hi(x+ δ) +µ for all i 6= y and all δ ∈ Rd such
that ‖δ‖p ≤ r.

Lemma 1. Let x ∈ Rd and r ≥ 0. If it holds that α ∈ [ 12 , 1]
and h(·) is certifiably robust at x with margin 1−α

α and radius
r, then the mixed classifier hα(·) is robust in the sense that
arg maxi h

α
i (x + δ) = arg maxi hi(x) for all δ ∈ Rd such

that ‖δ‖p ≤ r.

Proof. Suppose that h(·) is certifiably robust at x with margin
1−α
α and radius r. Since α ∈ [ 12 , 1], it holds that 1−α

α ∈ [0, 1].
Let y = arg maxi hi(x). Consider an arbitrary i ∈ [c] \ {y}
and δ ∈ Rd such that ‖δ‖p ≤ r. Since gi(x+ δ) ∈ [0, 1], it
holds that

exp
(
hαy (x+ δ)

)
− exp (hαi (x+ δ))

= (1− α)(gy(x+ δ)− gi(x+ δ))

+ α(hy(x+ δ)− hi(x+ δ))

≥ (1− α)(0− 1) + α(hy(x+ δ)− hi(x+ δ))

≥ (α− 1) + α
(
1−α
α

)
= 0.

Thus, it holds that hαy (x+ δ) ≥ hαi (x+ δ) for all i 6= y, and
thus arg maxi h

α
i (x+ δ) = y = arg maxi hi(x).

Lemma 1 provides further justifications for using proba-
bilities instead of logits in the mixing operation. Intuitively,
it holds that (1− α)gi(·) is bounded between 0 and 1− α,
so as long as α is relatively large (specifically, at least 1

2 ),
the detrimental effect of g(·) when subject to attack can be
overcome by h(·). On the other hand, if each gi(·) is the
logit, then it cannot be bounded, and thus it is much harder
to overcome its vulnerability.

Since we do not make assumptions on the Lipschitzness
or robustness of g(·), Lemma 1 is tight. To understand this,
we suppose that there exists some i ∈ [c]\{y} and δ 6= 0



such that ‖δ‖p ≤ r that make hy(x+ δ)− hi(x+ δ) := hd
smaller than 1−α

α , indicating that −αhd > α− 1. Since the
only information about g(·) is that gi(x+δ) ∈ [0, 1] and thus
the value gy(x+δ)−gi(x+δ) can be any number in [−1, 1],
it is possible that (1− α) (gy(x+ δ)− gi(x+ δ)) is smaller
than −αhd. In this case, it holds that hαy (x+δ) < hαi (x+δ),
and thus arg maxi h

α
i (x+ δ) 6= arg maxi hi(x).

While most certifiably robust models consider the special
case where the margin is zero, we will show that models built
via common methods are also robust with non-zero margins,
and can thus take advantage of Lemma 1. Specifically, we
consider two types of popular robust classifiers: Lipschitz
continuous models (Theorem 1) and RS models (Theorem 2).

Definition 2. A function f : Rd → R is called `p-Lipschitz
continuous if there exists L ∈ (0,∞) such that |f(x′) −
f(x)| ≤ L‖x′−x‖p for all x′, x ∈ Rd. The Lipschitz constant
of such f is defined to be Lipp(f) := inf{L ∈ (0,∞) :
|f(x′)− f(x)| ≤ L‖x′ − x‖p for all x′, x ∈ Rd}.

Assumption 1. The classifier h(·) is robust in the sense that,
for all i ∈ {1, 2, . . . , n}, hi(·) is `p-Lipschitz continuous with
Lipschitz constant Lipp(hi).

Assumption 1 is not restrictive in practice. For example,
RS with Gaussian smoothing variance σ2Id on the input
yields robust models with `2-Lipschitz constant

√
2
πσ2 [53].

Moreover, empirically robust methods such as TRADES and
AT often train Lipschitz continuous models, even though
evaluating their closed-form Lipschitz constants can be hard.

Theorem 1. Suppose that Assumption 1 holds, and let x ∈ Rd
be arbitrary. Let y = arg maxi hi(x). Then, if α ∈ [ 12 , 1], it
holds that arg maxi h

α
i (x+ δ) = y for all δ ∈ Rd such that∥∥δ∥∥

p
≤ rαp (x) := min

i 6=y

α (hy(x)− hi(x)) + α− 1

α
(
Lipp(hy) + Lipp(hi)

) .
Proof. Suppose that α ∈ [ 12 , 1], and let δ ∈ Rd be such that
‖δ‖p ≤ rαp (x). Furthermore, let i ∈ [c] \ {y}. It holds that

hy(x+ δ)− hi(x+ δ)

= hy(x)− hi(x)

+ hy(x+ δ)− hy(x) + hi(x)− hi(x+ δ)

≥ hy(x)− hi(x)

− Lipp(hy)‖δ‖p − Lipp(hi)‖δ‖p
≥ hy(x)− hi(x)

−
(
Lipp(hy) + Lipp(hi)

)
rαp (x) ≥ 1−α

α .

Therefore, h(·) is certifiably robust at x with margin 1−α
α

and radius rαp (x). Hence, by Lemma 1, the claim holds.

We remark that the `p norm that we certify using Theorem 1
may be arbitrary (e.g., `1, `2, or `∞), so long as the Lipschitz
constant of the robust network h(·) is computed with respect
to the same norm.

If α→ 1, then rαp (x)→ mini6=y
hy(x)−hi(x)

Lipp(hy)+Lipp(hi)
, which

is the standard (global) Lipschitz-based robust radius of h(·)
around x (see, e.g., [54], [55] for further discussions on

Lipschitz-based robustness). On the other hand, if α is too
small in comparison to the relative confidence of h(·), namely,
if there exists i 6= y such that α ≤ 1

1+hy(x)−hi(x) , then
rαp (x) ≤ 0, and in this case we cannot provide non-trivial
certified robustness for hα(·). This is rooted in the fact that
too small of an α value amounts to an excess weight into
the non-robust classifier g(·). If h(·) is 100% confident in
its prediction, then hy(x) − hi(x) = 1 for all i 6= y, and
therefore this threshold value of α becomes 1

2 , leading to
non-trivial certified radii for α > 1

2 . However, once we put
over 1

2 of the weight into g(·), a nonzero radius around x is
no longer certifiable. Again, this is intuitively the best one
can expect, since no assumptions on the robustness of g(·)
around x have been made. Theorem 1 clearly generalizes
to the even less restrictive scenario of using local Lipschitz
constants over a neighborhood U of x as a surrogate for the
global Lipschitz constants, so long as the condition δ ∈ U is
also added to the hypotheses.

We now move on to tightening the certified radius in the
special case when h(·) is an RS classifier and our robust radii
are defined in terms of the `2 norm.

Assumption 2. The classifier h(·) is a (Gaussian) randomized
smoothing classifier, i.e., h(x) = Eξ∼N (0,σ2Id)

[
h(x+ ξ)

]
for all x ∈ Rd, where h : Rd → [0, 1]c is a classifier that is
non-robust in general. Furthermore, for all i ∈ [c], hi(·) is
not 0 almost everywhere or 1 almost everywhere.

Theorem 2. Suppose that Assumption 2 holds, and let
x ∈ Rd be arbitrary. Let y = arg maxi hi(x) and
y′ = arg maxi6=y hi(x). Then, if α ∈ [ 12 , 1], it holds that
arg maxi h

α
i (x+ δ) = y for all δ ∈ Rd such that

‖δ‖2 ≤ rασ (x)

:=
σ

2

(
Φ−1 (αhy(x))− Φ−1 (αhy′(x) + 1− α)

)
.

Proof. First, note that since every hi(·) is not 0 almost
everywhere or 1 almost everywhere, it holds that hi(x) ∈
(0, 1) for all i and all x. Now, suppose that α ∈ [ 12 , 1], and let
δ ∈ Rd be such that ‖δ‖2 ≤ rασ (x). Let µα := 1−α

α . Define
the function h̃ : Rd → Rc by

h̃i(x) =

{
hy(x)
1+µα

if i = y,
hi(x)+µα

1+µα
if i 6= y.

Furthermore, define ĥ : Rd → Rc by

ĥ(x) = Eξ∼N (0,σ2Id)

[
h̃(x+ ξ)

]
.

Then, since h̃y(x) =
hy(x)
1+µα

∈ (0, 1
1+µα

) ⊆ (0, 1) and

h̃i(x) = hi(x)+µα
1+µα

∈ ( µα
1+µα

, 1) ⊆ (0, 1) for all i 6= y, it
must be the case that 0 < h̃i(x) < 1 for all i and all x, and
hence, for all i, the function x 7→ Φ−1

(
ĥi(x)

)
is `2-Lipschitz

continuous with Lipschitz constant 1
σ (see [56, Lemma 1], or

Lemma 2 in [53] and the discussion thereafter). Therefore,∣∣∣Φ−1(ĥi(x+ δ)
)
− Φ−1

(
ĥi(x)

)∣∣∣ ≤ ‖δ‖2
σ
≤ rασ (x)

σ
(5)



for all i. Applying (5) for i = y yields that

Φ−1
(
ĥy(x+ δ)

)
≥ Φ−1

(
ĥy(x)

)
− rασ (x)

σ
, (6)

and, since Φ−1 is monotonically increasing and ĥi(x) ≤
ĥy′(x) for all i 6= y, applying (5) to i 6= y gives that

Φ−1
(
ĥi(x+ δ)

)
≤ Φ−1

(
ĥi(x)

)
+
rασ (x)

σ

≤ Φ−1
(
ĥy′(x)

)
+
rασ (x)

σ
. (7)

Subtracting (7) from (6) gives that

Φ−1
(
ĥy(x+ δ)

)
− Φ−1

(
ĥi(x+ δ)

)
≥ Φ−1

(
ĥy(x)

)
− Φ−1

(
ĥy′(x)

)
− 2rασ (x)

σ

for all i 6= y. By the definitions of µα, rασ (x), and ĥ(x),
the right-hand side of this inequality equals zero, and hence,
since Φ is monotonically increasing, we find that ĥy(x+δ) ≥
ĥi(x+ δ) for all i 6= y. Therefore,

hy(x+ δ)

1 + µα
= Eξ∼N (0,σ2Id)

[
hy(x+ δ + ξ)

1 + µα

]
= ĥy(x+ δ)

≥ ĥi(x+ δ) = Eξ∼N (0,σ2Id)

[
hi(x+ δ + ξ) + µα

1 + µα

]
=
hi(x+ δ) + µα

1 + µα
.

Hence, hy(x + δ) ≥ hi(x + δ) + µα for all i 6= y, so h(·)
is certifiably robust at x with margin µα = 1−α

α and radius
rασ (x). Therefore, by Lemma 1, it holds that arg maxi h

α
i (x+

δ) = y for all δ ∈ Rd such that ‖δ‖2 ≤ rασ (x), which
concludes the proof.

To summarize our certified radii, Theorem 1 applies to very
general Lipschitz continuous robust base classifiers h(·) and
arbitrary `p norms, whereas Theorem 2, applying to the `2
norm and RS base classifiers, strengthens the certified radius
by exploiting the stronger Lipschitzness of x 7→ Φ−1(ĥi(x))
arising from the special structure and smoothness granted
by Gaussian convolution operations. Theorems 1 and 2
guarantee that our proposed robustification cannot be easily
circumvented by adaptive attacks.

IV. NUMERICAL EXPERIMENTS

A. The Relationships Between the Accuracies and α

We first use the CIFAR-10 dataset to evaluate the perfor-
mance of the mixed classifier hα(·) with various values of α.
Specifically, we use a ResNet18 model trained on clean data
as the standard model g(·) and use another ResNet18 trained
on PGD20 data as the robust model h(·). We consider PGD20

attacks that target g(·) and h(·) individually (abbreviated as
STD and ROB attacks), in addition to the adaptive PGD20

attack generated using the end-to-end gradient of hα(·),
denoted as the MIX attack.

The test accuracy of each mixed classifier is presented in
Fig. 2. As α increases, the clean accuracy of hα(·) converges
from the clean accuracy of g(·) to the clean accuracy of h(·).
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Fig. 2: The performance of the mixed classifier hα(·). “STD
attack”, “ROB attack”, and “MIX attack” refer to the PGD20

attack generated using the gradient of g(·), h(·), and hα(·)
respectively, with ε set to 8

255 .

TABLE I: Average gap between the probabilities of the
predicted class and the runner-up class.

Clean data PGD20 data
Correct Incorrect Correct Incorrect

g(·) 0.982 0.698 0.559 0.998
h(·) 0.854 0.434 0.767 0.636

In terms of the attacked performance, when the attack targets
g(·), the attacked accuracy increases with α. When the attack
targets h(·), the attacked accuracy decreases with α, showing
that the attack targeting h(·) becomes more benign when
the mixed classifier emphasizes g(·). When the attack targets
hα(·), the attacked accuracy increases with α.

When α is around 0.5, the MIX-attacked accuracy of hα(·)
quickly increases from near zero to more than 30% (which
is two third of h(·)’s attacked accuracy). This observation
precisely matches the theoretical intuition provided by Theo-
rem 1. On the other hand, when α is greater than 0.5, the clean
accuracy gradually decreases at a much slower rate, leading
to the noticeably alleviated accuracy-robustness trade-off.

This difference in how clean and attacked accuracies
change with α can be explained by the prediction confidence
of h(·). Specifically, according to Table I, h(·) can make
correct predictions under attack relatively confidently (average
robustness margin is 0.767). Thus, once α becomes greater
than 0.5 and gives h(·) more authority over g(·), h(·) can use
this confidence to correct g(·)’s mistakes. On the other hand,
h(·) is unconfident when it produces incorrect predictions
on clean data (the gap between the top two classes is only
0.434). In contrast, g(·) is highly accurate and confident on
clean data, but also makes confident mistakes when under
attack. As a result, even when α ≥ 0.5 and g(·) is less
powerful than h(·), g(·) can still correct some of the mistakes
from h(·) on clean data. In other words, h(·)’s confidence
difference between correctly predicted attacked examples and
incorrectly predicted clean ones is the key source of the
improved accuracy-robustness trade-off.
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Fig. 3: Comparing the certified accuracy-robustness trade-off of RS models and our mixed classifier using both Lipschitz-based
(Lip-based) certificates and RS-based certificates (Theorems 1 and 2, respectively). The clean accuracies are the same between
hbaseline(·) and hα(·) in each subfigure, and the empty circles represent discontinuity in the certified accuracy at radius 0.

B. Visualization of the Certified Robust Radii

Next, we visualize the certified robust radii presented in
Theorem 1 and Theorem 2. Since a (Gaussian) RS model
with smoothing covariance matrix σ2Id has an `2-Lipschitz
constant

√
2
πσ2 , such a model can be used to simultaneously

visualize both theorems, with Theorem 2 giving tighter
certificates of robustness. Note that RS models with a larger
smoothing variance certify larger radii but achieve lower clean
accuracies, and vice versa. Here, we consider the CIFAR-10
dataset and select g(·) to be a ConvNeXT-T model with a
clean accuracy of 97.25%, and use the RS models presented in
[25] as h(·). For a fair comparison, we select an α value such
that the clean accuracy of the constructed mixed classifier
hα(·) matches that of another RS model hbaseline(·) with a
smaller smoothing variance. The expectation term in the
RS formulation is approximated with the empirical mean of
10000 random perturbations drawn from N (0, σ2Id), and the
certified radii of hbaseline(·) are calculated using Theorems 1
and 2 by setting α to 1. Fig. 3 displays the calculated certified
accuracies of hα(·) and hbaseline(·) at various attack radii. The
ordinate “Accuracy” at a given abscissa “`2 radius” reflects
the percentage of the test data for which the considered model
gives a correct prediction as well as a certified radius at least
as large as the `2 radius under consideration.

In both subplots of Fig. 3, the certified robustness curves of
hα(·) do not connect to the clean accuracy when α approaches
zero. This is because Theorems 1 and 2 both consider
robustness with respect to h(·) and do not issue certificates
to test inputs at which h(·) makes incorrect predictions, even
if hα(·) predicts correctly at some of these points. This is
reasonable because we do not assume any robustness or
Lipschitzness of g(·), and g(·) is allowed to be arbitrarily
incorrect whenever the radius is non-zero.

The Lipschitz-based bound of Theorem 1 allows us to
visualize the performance of the mixed classifier hα(·)

when h(·) is an `2-Lipschitz model. In this case, the
curves associated with hα(·) and hbaseline(·) intersect, with
hα(·) achieving higher certified accuracy at larger radii
and hbaseline(·) certifying more points at smaller radii. By
adjusting α and the Lipschitz constant of h(·), it is possible to
change the location of this intersection while maintaining the
same level of clean accuracy. Therefore, the mixed classifier
structure allows for optimizing the certified accuracy at a
particular radius, while keeping the clean accuracy unchanged.

The RS-based bound from Theorem 2 captures the be-
havior of hα(·) when h(·) is an RS model. For both hα(·)
and hbaseline(·), the RS-based bounds certify larger radii
than the corresponding Lipschitz-based bounds. Nonetheless,
hbaseline(·) can certify more points with the RS-based guar-
antee. Intuitively, this phenomenon suggests that RS models
can yield correct but low-confidence predictions when under
attack with a large radius, and thus may not be best-suited for
our mixing operation, which relies on robustness with non-
zero margins. In contrast, Lipschitz models, a more general
and common class of models, exploit the mixing operation
more effectively. Moreover, as shown in Fig. 2, empirically
robust models often yield high-confidence predictions when
under attack, making them more suitable to be used as the
robust base classifier for hα(·).

C. Additional Empirical Support for Ri(x) = 1

Finally, we use additional empirical evidence (Figures 4a
and 4b) to show that Ri(x) = 1 is the appropriate choice
for the mixed classifier and that the probabilities should be
used for the mixture. While most experiments in this paper
are based on the popular ResNet architecture, our method
does not depend on any ResNet properties. Therefore, for the
experiment in Fig. 4a, we select a more modern ConvNeXT-
T model [57] pre-trained on ImageNet-1k as an alternative
architecture for g(·). We also use a robust model trained via
TRADES in place of an adversarially-trained network for h(·)



TABLE II: Experiment settings for comparing the choices of Ri(x).

Attack Budget and PGD Steps g(·) Architecture h(·) Architecture

Fig. 1 `∞, ε = 8
255

, 10 Steps Standard ResNet18 `∞-adversarially-trained ResNet18
Fig. 4a `∞, ε = 8

255
, 20 Steps Standard ConvNeXT-T TRADES WideResNet-34

Fig. 4b `2, ε = 0.5, 20 Steps Standard ResNet18 `2-adversarially-trained ResNet18
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Fig. 4: Comparing the options for Ri(x) with alternative selections of base classifiers.

for the interest of diversity. Additionally, although most of our
experiments are based on `∞ attacks, the proposed method
applies to all `p attack budgets. In Fig. 4b, we provide an
example that considers the `2 attack. The experiment settings
are summarized in Table II.

Figures 4a and 4b confirm that setting Ri(x) to the
constant 1 achieves the best trade-off curve between clean
and attacked accuracy, and that mixing the probabilities
outperforms mixing the logits. This result aligns with the
conclusions of Fig. 1 and our theoretical analyses.

For all three cases listed in Table II, the mixed classifier
reduces the error rate of h(·) on clean data by half while
maintaining 80% of h(·)’s attacked accuracy. This observation
suggests that the mixed classifier noticeably alleviates the
accuracy-robustness trade-off. Additionally, our method is
especially suitable for applications where the clean accuracy
gap between g(·) and h(·) is large. On easier datasets such
as MNIST and CIFAR-10, this gap has been greatly reduced
by the latest advancements in constructing robust classifiers.
However, on harder tasks such as CIFAR-100 and ImageNet-
1k, this gap is still large, even for state-of-the-art methods.
For these applications, standard classifiers often benefit much
more from pre-training on larger datasets than robust models.

V. CONCLUSIONS

This paper proposes a mixed classifier that leverages the
mixture of an accurate classifier and a robust classifier to
mitigate the accuracy-robustness trade-off of deep models.
Since the two base classifiers can be pre-trained, the mixed
classifier requires no additional training. Empirical results
show that our method can approach the high accuracy of the
latest standard models while retaining the robustness achieved
by state-of-the-art robust classification methods. Moreover,

we mathematically prove that the mixed classifier inherits the
certified robustness of the robust base model under realistic
assumptions. By varying the Lipschitz constant of the robust
base classifier, the mixed classifier allows for optimizing the
certified robustness at a particular radius without sacrificing
clean accuracy. Consequently, this work provides a foundation
for future research to focus on either accuracy or robustness
without sacrificing the other, providing additional incentives
for deploying robust models in safety-critical control.
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