
 1

Design and Implementation of

A Data-Display MATLAB GUI for

Cochlear Model Simulator

Yatong Bai
ybai70@gatech.edu

Georgia Institute of Technology
George W. Woodruff School of Mechanical Engineering

ME4699 Final Report

December 10th, 2018

 2

Table of Contents
1 Background and Purposes -3
 1.1 Purpose of Documentation 3
 1.2 Purpose of the GUI 3
2 Using the GUI -4

2.1 How to Use the GUI 4
2.2 GUI Performance 9
2.3 Plotting Options 9

2.3.1 Plot versus location / frequency 9
2.3.2 Frequency 10
2.3.3 Plot symmetric component & anti-symmetric 11
2.3.4 Relative to Stapes 11
2.3.5 Update figures real-time 12
2.3.6 Create new figures for new plots 12
2.3.7 Axis Limits 12
2.3.8 Log / Linear 16
2.3.9 Font sizes 16
2.3.10 Use Same Color Limits for All 16
2.3.11 Save Current Figures 16

3 GUI Implementation - 17
3.1 Software Structure 17
3.2 Code Layout of GUIs in MATLAB App Designer 17

 3.3 Key Objects and Functions 18
 3.3.1 plotFigs.m 18
 3.3.2 createFigs 20
 3.3.3 graphicOption 21
 3.3.4 getLineStyle.m 22

4 Incomplete Functionalities and Known Bugs - 22
4.1 Potential Improvements 22

 4.1.1 Efficiency and Performance 22
 4.1.2 Compatibility with Lower Resolution Screens 22
 4.1.3 Legends 23

4.2 Known Bugs 24
 4.2.1 Unstable when Parameters are Updated Too Frequently 24
 4.2.2 Y-z Slices of 2D Colormap 24

References -25

 3

1 Background and Purpose

1.1 Purpose of Documentation

This software design report explains how to use the Data Display Graphical User Interface (GUI) for cochlear

simulation and documents the implementation of the GUI. The targeted audiences are the group members in the research

group and other researchers interested in simulation data obtained by the research group.

1.2 Purpose of the GUI

The research group performs simulations with physiologically-based models of cochlea in order to better understand

and analyze the behaviors of cochlea. The simulations are done with MATLAB. The multi-physics models have

mechanical, electrical and acoustic components and are based on Finite Element Method [1].

Figure 1. Structure of the cochlear model.

Currently, researchers have to create code in MATLAB in order to display simulation data. The data includes

cochlear fluid pressure, outer hair cell forces, velocities, potentials and currents as functions of stimulus frequency, level,

and the x location along the cochlea. Manually processing this complicated data into 3-D or 2-D arrays and plotting can

be very tedious and requires extensive experience and the structure of the data.

The Data Display Graphical User Interface (GUI) is designed to make this process easier and faster. Its goals include

facilitating researchers in this research group to display simulation data and sharing the data with other researchers. One

of the crucial advantages of the GUI is that it is friendly to people with minimal knowledge about MATLAB programming

or the structure of the simulation data. Also, since the GUI is planned to be uploaded to the website along with the

simulation data, the size of the data is restricted. Currently the two data files that the GUI is using is approximately 3GB

 4

in total. The GUI includes the functionality of plotting 1D curves of all simulation data with respective to position or

frequencies at various levels, as well as the functionality of creating pressure colormaps.

Due to its relative low implementing difficulty, clear code structure, and good compatibility with other MATLAB

components, MATLAB App Designer was chosen as the implementing tool of the GUI. The GUI is implemented and

tested on both Windows and Mac using MATLAB R2017a. The user needs to have App Designer installed as MATLAB

add-on to run the GUI. Tested screen resolutions range from 1600*900 to 3840*2160, with the tested aspect ratio of 16:9

and 16:10. Figures may not display correctly on lower-resolution screens.

2 Using the GUI

2.1 How to use the GUI

The GUI is divided into two sections: the left section controls general plotting options (Frequency, Level,

Simulations, Plot vs, etc.) and graphical options (font sizes, x-axis limit, etc.); the right section has three tabs, which

control parameters associated with pressure, velocity and potential data respectively.

To add or modify figures, check / uncheck corresponding checkboxes and modify parameters. Figures are

automatically updated if “Update Figures Real Time” is checked, but the user can always click “Plot” to plot again.

The GUI creates at most 4 MATLAB figures: one for 3D pressure colormap (Fig. 1), one for 2D pressure colormap

(Fig. 2), one for 1D pressure curves and velocity curves (Fig. 3), and one for potential, current and force curves (Fig. 4).

Each of the figure has its default location and size. The number of subplots of Fig. 2, Fig. 3, and Fig. 4 varies according

to the options that the user selects, and these three figures therefore changes their sizes as needed. After the user changes

the size of Fig. 3 or Fig. 4, they will not automatically change sizes anymore (Fig. 2 will still change size according to

the number of slices). After the user moves a figure, the figure will preserve its position when updated.

The GUI has the ability to plot multiple simulations. Each simulation can have different level-frequency combination

and therefore different responses. 1D curves vs location / frequency of a particular data of all simulations are plotted in

the same subfigure.

Colormaps handle multiple simulations in a different manner. The 3D colormap option is disabled for multiple-

simulation plotting. 2D colormaps are plotted as subplots in a Fig. 2 in the sequence shown in Figure 4.

 5

Figure 2. The GUI Layout.

 6

Figure 3. 1D curves for different simulations of one data are plotted on the same subplot.

 7

Figure 4. 2D colormaps of multiple simulations. The colormaps are arranged in the sequence of: x-z slice of simulation

1; all y-z slices of simulation 1; x-z slice of simulation 2; all y-z slices of simulation 2, etc. Y-z slices are sorted in

increasing x location.

 To add / remove a simulation, click the “Add Sim” / “Remove Sim” button, which are located in the left of the GUI.

To modify a simulation, select the simulation to be modified using the “Name of Sim to Control” drop down menu. Then,

use the Level dropdown menu and the Frequency edit field to modify it. It is also possible to modify the frequencies by

directly editing the table. However, levels can not be edited using the table and can only be modified using the dropdown

menu.

 8

Figure 5. The “Freq” column of the simulation table is interactive.

 Similarly, to add / remove an y-z slice in the colormaps, click the “Add y-z Slice” / “Remove y-z Slice” button. To

modify the x location of a y-z slice, choose the slide to control and use either the slider or the edit field to control its

location along the cochlea. The “Set Dist. to Best Place” button sets the location of the selected slice to the best place of

that level-frequency combination. The slice control applies to all simulations in the 2D colormap. Although there is also

a table of slices, it is not editable.

 The GUI has the ability to plot 1D curves of pressure (P at y=0, z=0), velocities, potentials, forces and currents

versus either x location along the cochlea, or stimulus frequency. To change the option of plotting versus x or frequency,

use the “Plot vs” button group. When plotting versus frequency, the “x-axis Scale” button group controls whether the x

axis is in logarithmic scale or linear scale. If “Plot vs Frequency” is chosen, the pressure colormaps will be disabled.

Refer to section 2.3.1 and section 2.3.2 for detailed descriptions.

To save the figures, click “Save Current Figures”. The GUI will create a new folder in the current directory and save

the figures in both “.jpg” and “.fig” format in the new folder. Refer to section 2.3.11 for a detailed description.

 9

“Close All Figures” button closes all figures. If the user clicks this button and plots the figures again, the figures will

be defaulted to their original locations and sizes. This may also be helpful if figures are not displayed correctly.

2.2 GUI Performance

The time that is required to make or update plots varies depending on the number of simulations, and the number of

plots the user chooses to generate. Pressure data, force data, velocity data, potential data and current data need to be

loaded, processed and plotted individually. Therefore, when many of them are selected by the user, the GUI may respond

slower, especially when there are more than one simulation.

 To avoid internal instabilities, it is advisable to not let the GUI plot again while the previous plotting process hasn’t

finished. When “Update Figures Real Time” option is checked, modifying options and parameters on the GUI will

automatically trigger a new plotting process. When the GUI is making plots, a green “Plotting…” label will be shown on

the GUI. Trying to update the plots while they haven’t been finished plotting may cause functions to be called again

before it finishes execution. When this happens, the values stored in the global variables may not be correct, and may

thus generate errors.

 If multiple simulations and multiple plots are selected (the GUI responds slower) and the user desires to change

multiple parameters (or select/unselect multiple options), it is advisable to uncheck “Update Figures Real Time”

checkbox at the top-left of the GUI. This is to avoid updating the plots multiple times, which may be slow in this case.

After changing all parameters, click the “Plot!” button to update the figures.

 When encountering errors that are resulted from changing parameters while figures are still being modified, click

“Close All Figures” and then click “Plot!” should clear the errors.

2.3 Plotting Options

2.3.1 Plot vs Location (x) / Frequency

The GUI has the functionality of plotting versus location (x along the cochlea) and plotting versus frequency. When

plotting versus location, stimulus level and frequency are both fixed. X locations are the x-axis and the data are the y

axis. Pressure colormaps can also be created. The 2D colormap plot consists x-z slices and y-z slices and is organized as

shown in Figure 4. When plotting versus frequency, location (x) is fixed to the best place of the specified frequency.

 10

2.3.2 Frequency

Figure 6. Frequency / CF edit field. Since “Plot vs Frequency” is selected, the edit field is now labeled “CF”.

As described in section 2.3.1, user-entered frequencies are used differently in “Plot versus x” and “Plot versus

frequency. Therefore, when “Plot with frequency” is selected, the “Frequency” edit field changes its label to “CF”.

Pressure data, which is contained in the file “PureToneResults_FullP.mat”, has a frequency resolution of 1000Hz,

which is more coarse than other data, which are contained in “PureToneResults_2018BJ_AllButP.mat”. These data has

a frequency resolution of 100Hz. The reason for this difference is that velocity/potential data only depend on x location

and frequency, while pressure depends on x, z, mode, and frequency. As a result, pressure data consumes significantly

more space. The size of the velocity/potential data is about 73MB for 100Hz resolution, while that of pressure data at

100Hz resolution is more than 26GB. With 1000Hz resolution, the pressure data is now about 3GB. Since one of the

design purposes of this GUI to share experiment results with other researchers, the research group plans to post the GUI

 11

online along with the simulation data. Using a very fine resolution for pressure data makes it very difficult to be posted

online. Therefore, pressure data has more coarse frequency resolution. Other data have finer frequency resolution for

optimal precision.

When the frequency that the user enters does not exist in both data files, the closest available frequency will be

chosen. A label will be displayed on the GUI to inform the user about the approximation, and the GUI will display the

updated frequency value. If the specified frequency only exists in “AllButP”, the GUI will use that frequency for

everything but pressure, and look for the closest frequency that exists in “FullP”. The informing label won’t be shown,

but the legends of the plots will show the actual frequency that is being plotted.

2.3.3 Plot symmetric / anti-symmetric pressure curve (1D Pressure)

If “Plot Symmetric Pressure Curve” option is checked, then symmetric component of pressure at y=0, z=0 will be

plotted in the same graph of 1D total pressure. If “Plot Anti-symmetric Pressure Curve” option is checked, then anti-

symmetric component of pressure at y=0, z=0 will be plotted in the same graph as well. The total pressure is the sum of

symmetric and anti-symmetric components.

Figure 7. Relationship between symmetric, anti-symmetric, and total pressure.

2.3.4 Relative to Stapes (Velocities)

This option is located in the “Velocities” tab.

If this option is checked, the velocities will be divided by stapes velocity (which are loaded from the data file).

If this option is not checked, the velocities will be divided by reference velocity, which is 10-4 cm/s.

2.3.5 Update Figures Real-time

This checkbox is located at the top-left of the GUI.

If this option is checked, then every time when the user modifies one of the parameters or check/uncheck an option,

the GUI re-load the data and replots every figure. This make the GUI easy to use when there are only one or two

simulations and not many data selected. However, if the user wishes to modify several parameters or change several

options at one time, checking this option makes the GUI slower to respond. Since the GUI may generate errors if the user

changes options while the GUI is still plotting, it is advisable to uncheck this option in this case.

When this option is unchecked, the GUI will not plot or update the figures until “Plot!” button is clicked.

 12

2.3.6 Create New Figures for New Plots

This checkbox is located at the top-left of the GUI.

When this option is checked, the GUI opens new MATLAB figures every time it plots.

When this option is not checked, the GUI updates the plots on current open figures.

2.3.7 Axis Limits

Axis limits are adjustable for x-axis, y-axis (1D graphs) and color axis (colormaps). X-axis limit affects every 1D

plot. However, y-axes adjustment for different data are separate. Y-axes adjustment for magnitude and phase are also

separate. The locations of the adjustments in the GUI is shown in Figure 5. User-specified color axis limit applies to

every colormap. However, whether different colormaps share default color axis limits depends on whether “Use Same

Color Limits for All” is checked. Refer to section 2.3.10.

 13

 14

Figure 8. Locations of axis limit adjustments.

When both boundaries (lower / upper limit) are not specified, default axis limits will be used. Default x-axis limit is

the length of the basilar membrane (1.12 cm for the gerbil); default y-axis limits and color axis limit depend on the range

of the data. When only one boundary is specified, the other boundary will be the default value. When both boundaries

are specified, they will both be used in the corresponding plot. To return to default values, please clear the edit fields.

If log / linear option is changed, x-axis limit will be cleared and default limit will be used.

2.3.8 Log / Linear

Log / Linear radio button group is only visible when “Plot vs Frequency” is selected. In the “Plot vs Frequency”

case, the user can control whether to use log scale for the x-axis (frequency) or to use linear scale.

 15

2.3.9 Font Size

This option is located at the bottom-left of the GUI.

The “Font Size” panel offers the adjustability of figure title font sizes and figure axes label font sizes. When the user

enters a value, it applies to all figures, including the color bars.

2.3.10 Use Same Color Limits for All

This option is located in the “3D & 2D” panel in the “Pressure” tab.

This option controls whether all pressure colormaps share the same default color limits. When this option is checked,

the default color limits are determined based on the total range of all the pressure data being plotted. When this option is

unchecked, each simulation has its own color limits, based on the data range of that particular simulation.

However, this option doesn’t affect user-specified color axis limits. For example, if the user is plotting two

simulations with different F-L combination and sets the upper limit of the color axis, leaving the lower limit blank, and

uncheck this option, then all the 2D colormaps (3D colormap will be disabled in this case) share the same upper color

axis limit that the user sets. However, their lower limits are determined based on the data they are plotting, which are

likely different.

3D colormap, 2D x-z slice, and 2D y-z slices of one simulation always share the same color axis limit, regardless

whether this option is checked.

2.3.11 Save Current Figures

When the “Save Current Figures” button is clicked, all currently open figures created by the GUI will be saved.

The GUI creates a new folder in the current directory. The name of the folder is determined by the current date and

time, as well as the frequency and level of each simulation. The format is:

“date(yyyymmdd)_time(hhmmss)_(sim1F%L)_(sim2F%L)_...”.

Then, the GUI saves all the figures in both .fig and .png formats in the new folder. The names of the files also

follow the same format, but starting with the content of the figure (e. g. Pressure1D&Velocities).

3 GUI Implementation

3.1 Software Structure

The front-end objects (Edit Fields, Dropdown Menus, Tables, etc.) shown on the GUI are linked (by callback

functions) with backend variables that controls what data need to be plotted. When the user enters values in the GUI,

these variables are also updated. After these variables are ready, they are fed into the function “plotFigs.m”. “plotFigs.m”

loads the files that contain all the data, and assigns only the specified data to variables, which are arrays ready to be

plotted. To optimize readability, most of the actual plotting are done in plot functions (e.g. plotBMVelo.m). Stimulus

frequency and best place location are returned to the GUI from “plotFigs.m”. Refer to section 3.3.1 for detailed

description about “plotFigs.m”.

 16

3.2 Code Layout of GUIs in MATLAB App Designer

The code of a GUI starts with declarations of public properties. As described before, public properties consist front-

end objects and user-defined “static” variables. After a public property is defined under “properties (Access =

public)”, it can be referenced anywhere in the GUI by using “app.PROPERTY_NAME” (e. g. “app.createFigs”).

Within this part of the code, front-end objects are declared first. This is automatically done by the App Designer

after the user creates a front-end object. App Designer protects this part from being edited by the user, avoiding the

possibility of creating bugs.

Next, the variables are declared. They are declared in a similar way of declaring a front-end object.

The helper functions are defined and implemented as “methods”, after properties are defined. They are defined under
“methods (Access = private)”, with the similar format as ordinary functions are defined. However, “app”

is required to be an input argument. The actual format would be “function FUNC_NAME (app, ARG1,

ARG2, …)”.

The callback functions are declared as methods after the helper functions. The declarations of the callback functions

are automatically done by App Designer once the user chooses to create a callback function. The declarations are in the

format of “function FIELD_NAMEValueChanged(app, event)”. The declarations of callback functions are

not editable by the programmer. However, the user can change all the contents of callback functions.

Callback functions are automatically called when the user modifies the corresponding front-end object. However,

one special callback function is the startup function, which is “startupFcn(app)”. This function is called when the

GUI starts.
In the “Code View” of the App Designer, initialization of the app is implemented after the callback functions.

Implemented as function “createComponents(app)”, it sets the default values, editabilities, visibilities and other

fields of the front-end objects. This part of code is not editable by the programmer. If the programmer wishes to change

the default fields of the front-end objects, he/she must modify them using the “Design View” and the properties window,

instead of changing the code. This will be further explained in section 2.2.4.

In a nutshell, the layout of the code is:

l Public Properties Declaration

l Helper Functions

l Callback Functions

l Front End Objects Initialization (non-editable)

3.3 Key Variables and Functions
This section introduces some of the important functions and variables to ease possible modifications to the code.

Although several helper functions are written in the GUI file in App Designer, most of the data processing and

plotting code are written outside the GUI. The reasons are:

l Debugging the code written in the GUI is not as easy;

l Cannot separate to different files;

 17

l App Designer responses slower than MATLAB.

On the other hand, helper functions written in App Designer can access public properties. Therefore, functions that

uses many public properties are written in the GUI, while other functions are written as normal MATLAB script files

outside of the GUI.

3.3.1 plotFigs.m

“PlotFigs.m” is one of the functions written outside the GUI. Its main functionalities are loading data, processing

pressure data, plotting pressure colormaps, and feeding other data (potentials, velocities, etc.) to their corresponding

plotting functions.

The first part of “PlotFigs.m” loads pressure data from “PureToneResults_FullP.mat” to “matObj” and loads all

other data from “PureToneResults_FullP.mat” to “matObj2”. The data tables are subsequently loaded into “T” and

“T2”. The tables contain lists of available frequencies and levels. They are used to determine the corresponding row

numbers of the selected frequencies and levels in the data arrays. Because the pressure data array has more dimensions

and therefore consume much more storage space, the frequency resolution of pressure data is less fine then other data

(refer to section 2.3.2). As mentioned in section 2.3.1, the function loads different data into the data variables depending

whether the user chooses to plot vs frequency or vs location along the cochlea (x). However, the basic implementation is

same for both cases: after loading tables, this function looks for the location that corresponds to the specified F and L,

and then load data that are ready to be plotted into variables (vBM, deltaPhiA, P_3D, etc.). In order to handle multiple

simulations, these variables are cell arrays and each cell consists data of one simulation.

Figure 9. Code snippet that loads matObj and T.

Figure 10. Code snippet that looks for the row of data that corresponds to the specified stimulusfrequency and level.

Figure 11. Code snippet that assign the data to variables. The variables are cell arrays to enable multiple-simulation

plotting.
“PlotFigs.m” function also processes and plots pressure colormaps. The 3D data is first “squeezed” into 2D arrays.

“Squeeze” function deletes redundant array dimensions that only has one entry. In this GUI, this function converts the

 18

multi-dimensional data arrays into 2D arrays or 1D vectors. Then, the data is converted to dB scale. Next, the 3D

colormap is made by using the built-in “slice” function, while 2D colormaps are created by using “Plot3” function.

3.3.2 createFigs

“createFigs” is a structure array that consists of all the plotting options associate with data processing. It

contains a list of Boolean variables that flags whether certain data should be plotted. 3D colormap option can only be

checked when there is only one simulation. In addition, there are several other Booleans that control what to plot, namely

“clearFigs”, “StartUp”, “withX”, “log”.

Figure 12. A list of fields of “createFigs” and their default values.

The “clearFigs” field is a Boolean that specifies figure variables should be cleared. This is set to true “Close All

Figures” is clicked, or at startup. The “StartUp” field is a Boolean that is only true when the GUI is starts. When this

field is true, the GUI clear several necessary variables. The “withX” Boolean field controls plotting vs whether location

or frequency. When this field is true, data are plotted vs location. The “log” Boolean field controls whether the x-axis

is in linear scale or log scale. This is only effective when plotting vs frequency.

3.3.3 graphicOption

Similar to “createFigs”, “graphicOption” is also a structure array. This variable controls graphic options

such as axis limits (refer to section 2.3.7) and font sizes (refer to section 2.3.9).

 19

Figure 13. A list of fields of “graphicOption” and their default values.

One of the fields of this variable is “sameCL”. This variable controls if different 2D colormaps slices share the same

default color limits.

3.3.4 getLineStyle.m

This function returns the line style and thickness of the certain simulation. The line styles of multiple simulations are

by the sequence of “solid line”, “dot line”, “dashed line”, “dot-dash line”. The first four simulations (i=1:4) will use these

line styles and share the same line thickness of 2. Starting from the first line, it restarts the cycle by using a solid line.

However, the line thickness is reduced to half: simulation 5-8 will follow the same sequence and have thickness of 1. By

the same token, simulation 9-12 follow the line style sequence and have 0.5 as thicknesses and so on.

4 Incomplete Functionalities and Known Bugs

4.1 Potential Improvements

4.1.1 Efficiency and Performance

 Currently, the code is not written in a very efficient way. During the implementing process, functionality has always

been prioritized over efficiency.

 The code does not check whether a certain plot need to be updated. Instead, it loads all data and replot every subplots,

even when the user changes parameters that only affect a few plots.

 Currently, the code may take several seconds to finish plotting. The actual time depends on the amount of

simulations and the amount of sublots the user is plotting. This performance issue may slow down the process if the user

wishes to make multiple changes at one time and may even create errors if the user updates the GUI before it finishes

plotting. Therefore, in that case, please try unselecting “Update Figures Real Time”.

 20

 To solve this problem, it is advisable to modify the code by skipping unnecessary loading and plotting of data that

have not been changed. Another approach to speed up the loading process to load the whole “AllButP” file into the

memory in advance, so that the file doesn’t have to be accessed every time.

4.1.2 Compatibility with Lower Screen Resolutions

 The GUI is tested on screen resolutions ranging from 1600*900 to 3840*2160, with screen aspect ratio of 16:9 or

16:10. The windows may not display correctly on screens with lower resolutions.

 Currently, figures of 1D curves are sized according to the screen resolution. 2D colormap has the protection of not

exceeding the top edge of the screen. Whereas the sizes 3D colormap and the GUI itself are fixed.

 Although most of the computer screens that researchers are using have resolutions within the supported range, many

projectors have lower resolutions. Therefore, if the user plan to do a presentation, it is recommended to check the projector

resolution in advance. If the resolution is too low, please consider using the saved figures or other ways to present.

4.1.3 Legends

 Currently, the locations of the legends may not be optimal. Although the GUI tries to optimize the locations of the

legends by setting them to “best” (legend.Location=‘best’ makes MATLAB optimize the locations

automatically). However, when multiple simulations are plotted and the legends become large, they may still block the

curves. Even after the user moves the legends, they will return to their default places if the figures are re-plotted.

Preserving the locations of the legends was considered difficult.

Moreover, some of the contents of the legends are not optimal. For example, potential “Δφ” is written as “Phi” in

the GUI due to that Greek letters cannot be displayed correctly in some MATLAB versions.

Figure 14. “Δφ” is written as “Phi” in the GUI legends, which are defaulted at the top-right of the figure.

 21

4.2 Known Bugs

4.2.1 Unstable when Parameters are Updated Too Frequently

 As mentioned in section 2.2, the GUI takes several seconds to plot the figures. The actual time varies depending on

the number of simulations and the number of plots the user selected. If the user tries to modify the parameters or

check/uncheck options before the GUI finishes plotting, Errors may be generated. Try clicking “Close All Figures” and

clicking “Plot!” again to resolve the issue. Please refer to section 2.2 for detailed descriptions.

4.2.2 Y-z Slices of 2D Colormap

 The y-z slices of the 2D colormap doesn’t change their sizes when the user changes the overall size of Fig. 2.

However, x-z slices adjust their sizes accordingly. Therefore, the visual effect of Fig. 2 is the best when its size is kept at

the default value.

In addition, although very rarely, sometimes the y-z slices of the 2D colormap may not align with each other very

well. The possibility for this to happen is generally very low. But this misalignment may happen more frequently if the

performance of the computer is weaker. If this happens, click “Plot!” again and the slices should align perfectly.

References:

[1] Bowling and Meaud. “Forward and Reverse Waves: Modeling Distortion Products in the Intracochlear Fluid

Pressure”. Biophysical Journal, 2018.

