IEOR 160: Nonlinear and Discrete Optimization Univariate Optimization

Yatong Bai

February 6, 2024

This is a summarization of Professor Javad Lavaei's IEOR 160 lecture notes.

1 Global and Local Minimum

Consider a scalar function $f : \mathbb{R} \to \mathbb{R}$. Consider an interval $\mathcal{I} \subset \mathbb{R}$. We want to analyze the problem $\min_{x \in \mathcal{I}} f(x)$. We focus on the minimization case, because if we wish to maximize f, we can simply minimize -f.

- 1. x_{\star} is a global minimum if $f(x_{\star}) \leq f(x)$ for all $x \in \mathcal{I}$.
- 2. x_{\star} is a strict global minimum if $f(x_{\star}) < f(x)$ for all $x \in \mathcal{I} \setminus \{x_{\star}\}$.
- 3. x_{\star} is a local minimum if there exists $\delta > 0$ such that $f(x_{\star}) \leq f(x)$ for all $x \in \mathcal{I} \cap [x_{\star} \delta, x_{\star} + \delta]$.
- 4. x_{\star} is a strict local minimum if $\exists \delta > 0$ such that $f(x_{\star}) < f(x)$ for all $x \in \mathcal{I} \cap [x_{\star} \delta, x_{\star} + \delta] \setminus \{x_{\star}\}$.
- 5. A (strict) global minimum is a (strict) local minimum.
- 6. x_{\star} may be both a minimum and a maximum (this is true for global case and local case).

2 Univariate Unconstrained Optimization

- 1. First-order necessary condition (FOC necessary): If x_{\star} is a local minimum, then $f'(x_{\star}) = 0$.
- 2. If $f'(x_{\star}) = 0$, then x_{\star} is a stationary point, which may be a local minimum, a local maximum, or a saddle. The FOC itself is insufficient to find the local minimum. We must check the second-order conditions (SOC) to determine the type.
- 3. SOC necessary: If x_{\star} is a local minimum, then $f''(x_{\star}) \ge 0$.
- 4. SOC sufficient: If $f'(x_{\star}) = 0$ and $f''(x_{\star}) > 0$, then x_{\star} is a strict local minimum.
- 5. If $f'(x_{\star}) = 0$ and $f''(x) \ge 0$ for all $x \in \mathbb{R}$, then x_{\star} is a global minimum.
- 6. If $f'(x_{\star}) = 0$ and f''(x) > 0 for all $x \in \mathbb{R}$, then x_{\star} is a strict global minimum.
- 7. If $f'(x_{\star}) = f''(x_{\star}) = 0$, then find the smallest integer k such that $f^{(k)} \neq 0$.

- If k is odd, then x_{\star} is a saddle.
- If k is even and $f^{(k)} > 0$, then x_{\star} is a local minimum.
- If k is even and $f^{(k)} < 0$, then x_{\star} is a local maximum.

3 Univariate Constrained Optimization

Consider the optimization problem $\min_{x \in \mathbb{R}} f(x)$ subject to $a \le x \le b$. Any local minimum is either a stationary point or an endpoint of the interval (i.e. $f'(x_{\star}) = 0$ or $x_{\star} = a$ or $x_{\star} = b$).

- At $x_{\star} = a$, if f'(a) > 0, then $x_{\star} = a$ is a strict local minimum. If f'(a) < 0, then $x_{\star} = a$ is a strict local maximum. If f'(a) = 0, then $x_{\star} = a$ is a stationary point, and we need to check the SOC to determine its type.
- At $x_{\star} = b$, if f'(b) < 0, then $x_{\star} = b$ is a strict local minimum. If f'(b) > 0, then $x_{\star} = b$ is a strict local maximum. If f'(b) = 0, then $x_{\star} = b$ is a stationary point, and we need to check the SOC to determine its type.
- Between a and b, the optimality condition follows those of the unconstrained case. Make sure to only consider the stationary points between a and b.

When solving this type of problem, we need to check all three cases to find all optimal points.