IEOR 160: Nonlinear and Discrete Optimization Optimization Algorithms

Yatong Bai

February 6, 2024

This is a summarization of Professor Javad Lavaei's IEOR 160 lecture notes.

1 Golden Section

Golden section is a zeroth-order algorithm for uni-variate optimization problems. Consider the problem $\max_{x \in \mathbb{R}} f(x)$.

• Unimodal function: a function $f : [a, b] \to \mathbb{R}$ is unimodal if there exists x_{\star} such that f(x) strictly increases on $[a, x_{\star}]$ and strictly decreases on $[x_{\star}, b]$.

• Implementation of Golden Section:

Initialize $x^{(1)} \leftarrow a + (1-r)(b-a), x^{(2)} \leftarrow a + r(b-a)$ while $b-a > \epsilon$ do if $f(x^{(1)}) \leq f(x^{(2)})$ then $a \leftarrow x^{(1)}, x^{(1)} \leftarrow x^{(2)}, x^{(2)} \leftarrow a + r(b-a)$ else $b \leftarrow x^{(2)}, x^{(2)} \leftarrow x^{(1)}, x^{(1)} \leftarrow a + (1-r)(b-a)$ end if end while return $x_{\star} \in [a, b]$ (often $\frac{a+b}{2}$)

- Computation: There are two evaluations and one comparison in each iteration.
- The value of the golden ratio $r: \frac{1+\sqrt{5}}{2} \approx 0.618$. Other numbers between 0 and 1 can be used, but will make the section algorithm less efficient.
- Required number of steps: $k = \operatorname{ceil}\left(\frac{\log\left(\epsilon/(b-a)\right)}{\log r}\right) = \operatorname{ceil}\left(\frac{\log \epsilon \log(b-a)}{\log r}\right)$. I.e., find the smallest integer k such that $r^k(b-a) \leq \epsilon$.

2 Gradient and Newton's Methods

The gradient method is a first-order method, whereas Newton's method is second-order. They apply to uni-variate and multi-variate optimization problems. Consider the problem $\min_{x \in \mathbb{R}^n} f(x)$.

- Descent direction: At a point $\bar{x} \in \mathbb{R}^n$, Δx is a descent direction if $\nabla f(\bar{x})^\top \Delta x < 0$.
- A family of iterative optimization algorithms can be designed based on descent directions: the $(k + 1)^{\text{th}}$ iteration is $x^{(k+1)} \leftarrow x^{(k)} + t^{(k)} \Delta x^{(k)}$, where $\Delta x^{(k)}$ is a descent direction w.r.t. $x^{(k)}$, and $t^{(k)}$ is the step size at the $(k + 1)^{\text{th}}$ iteration.
- Gradient method: $x^{(k+1)} \leftarrow x^{(k)} t^{(k)} \nabla f(x^{(k)})$. Here, we use $-\nabla f(x^{(k)})$, which is a descent direction, as $\Delta x^{(k)}$.
- Newton's method: $x^{(k+1)} \leftarrow x^{(k)} t^{(k)} \left(\nabla^2 f(x^{(k)})\right)^{-1} \nabla f(x^{(k)})$. Here, we use $-\left(\nabla^2 f(x^{(k)})\right)^{-1} \nabla f(x^{(k)})$, which is another descent direction, as $\Delta x^{(k)}$.
- Why gradient/Newton? The gradient direction minimizes a local first-order Taylor approximation of the objective function. Similarly, the Newton direction minimizes a second-order approximation, and therefore Newton's method can solve certain quadratic problems in one iteration with $t^{(k)} = 1$.
- Newton's method converges faster than the gradient method, but each iteration takes longer.

2.1 Determining the Step Size $t^{(k)}$

- We can use fixed step size (e.g. $t^{(k)} = t$ for all k). However, too small $t^{(k)}$ leads to slow convergence, whereas too large $t^{(k)}$ leads to divergence.
- Exact line search: At each iteration, solve the problem $t^{(k)} = \arg \min_{t>0} f(x^{(k)} + t\Delta x^{(k)})$. Exact line search breaks one multi-variate problem into a series of uni-variate problems, which can then be solved using golden section.
- Backtracking line search: A practical approximation of exact line search:

Initialize $\alpha > 0$, $0 < \beta < 1$, and m = 0while $f(x^{(k)} + \alpha \beta^m \Delta x^{(k)}) \ge f(x^{(k)})$ do $m \leftarrow m + 1$ end while return $t^{(k)} = \alpha \beta^m$