IEOR 160: Nonlinear and Discrete Optimization Optimality Conditions (Multi-variate)

Yatong Bai

February 6, 2024

This is a summarization of Professor Javad Lavaei's IEOR 160 lecture notes.

1 Regular Points and Tangent Planes

1.1 Feasible Sets Formed by Equality Constraints Only

Consider the set $\mathcal{X} := \{x \in \mathbb{R}^n : h_i(x) = 0, i = 1, \dots, m\}.$

- **Regular point:** A point $y \in \mathcal{X}$ is regular if $\nabla h_i(y), i = 1, \ldots, m$ are linearly independent.
 - $-\nabla h_i(y), i = 1, \dots, m$ are linearly independent if $\exists \alpha_1, \dots, \alpha_m$ such that at least at least one α_i is non-zero and $\sum_{i=1}^m \alpha_i \nabla h_i(y) = 0.$
 - A zero vector is linearly dependent on any vector.
- Tangent plane: If a point $y \in \mathcal{X}$ is regular, then the tangent plane of \mathcal{X} at y is defined as $\mathcal{T}(y) := \{ \Delta y \in \mathbb{R}^n : \nabla h_i(y)^\top \Delta y = 0, i = 1, ..., m \}.$

- The dimension of the tangent plane is n - m.

1.2 Feasible Sets Formed by Equality and Inequality Constraints

Now, consider the set $\bar{\mathcal{X}} := \left\{ x \in \mathbb{R}^n : \begin{array}{l} h_i(x) = 0, \ i = 1, \dots, m \\ g_j(x) \le 0, \ j = 1, \dots, l \end{array} \right\}.$

Suppose that at a point $y \in \overline{\mathcal{X}}$, some of the inequality constraints are active. I.e., there exists a set of positive integers $\mathcal{J}_{\text{active}} \subseteq \{1, 2, \dots, l\}$, such that $g_j(y) = 0$ for all $j \in \mathcal{J}_{\text{active}}$.

- Regular point: A point $y \in \overline{\mathcal{X}}$ is regular if all $\nabla h_i(y)$ for i = 1, ..., m, as well as all $\nabla g_j(y)$ for $j \in \mathcal{J}_{\text{active}}$, are linearly independent.
- **Tangent plane:** If a point $y \in \bar{\mathcal{X}}$ is regular, then the tangent plane of $\bar{\mathcal{X}}$ at y is defined as $\mathcal{T}(y) := \begin{cases} \Delta y \in \mathbb{R}^n : & \nabla h_i(y)^\top \Delta y = 0, \ i = 1, \dots, m \\ \nabla g_j(y)^\top \Delta y = 0, \ j \in \mathcal{J}_{\text{active}} \end{cases} \end{cases}.$

2 Optimality Conditions

2.1 Unconstrained Optimization Problems

Consider the optimization problem $\min_x f(x)$.

- First-order condition (FOC): If x_{\star} is a local minimum, then $\nabla f(x_{\star}) = 0$.
- Second-order condition (SOC) necessary: If x_{\star} is a local minimum, then $\nabla^2 f(x_{\star}) \succeq 0$.
- Second-order condition (SOC) sufficient: If $\nabla f(x_{\star}) = 0$ and $\nabla^2 f(x_{\star}) \succ 0$, then x_{\star} is a strict local minimum.
- If $\nabla f(x_{\star}) = 0$ and $\nabla^2 f(x) \succeq 0$ for all $x \in \mathbb{R}^n$, then x_{\star} is a global min.

2.2 Equality Constrained Optimization Problems

Consider the optimization problem $\min_x f(x)$ subject to $h_i(x) = 0$ for i = 1, ..., m. Denote the dual variables associated with the constraints as $\lambda_1, ..., \lambda_m$. The Lagrangian function is then

$$L(x,\lambda,\mu) \coloneqq f(x) + \sum_{i=1}^{m} \lambda_i h_i(x).$$

- FOC: If x_{\star} is a regular point and a local minimum, then there exist Lagrangian multipliers $\lambda_{1\star}, \ldots, \lambda_{m\star}$ such that $\nabla f(x_{\star}) + \sum_{i=1}^{m} \lambda_{i\star} \nabla h_i(x_{\star}) = 0.$
- SOC necessary: If x_{\star} is a regular point and a local minimum, then $\frac{1}{2}\Delta x^{\top}M\Delta x \ge 0$ for all Δx on the tangent plane $\mathcal{T}(x_{\star})$, where M is the Hessian of the Lagrangian, defined as

$$M \coloneqq \nabla^2 f(x_\star) + \sum_{i=1}^m \lambda_{i\star} \nabla^2 h_i(x_\star)$$

- To make this condition practical and usable, we can construct a tangent plane basis matrix $E \coloneqq \begin{bmatrix} y_1 & \dots & y_{n-m} \end{bmatrix}$, where y_1, \dots, y_{n-m} are arbitrary vectors such that
 - * $y_1,\ldots,y_{n-m}\in\mathcal{T}(x_\star);$
 - * y_1, \ldots, y_{n-m} are linearly independent.

The SOC necessary condition can be written as $E^{\top}ME \succeq 0$.

• SOC sufficient: If x_{\star} is a regular point satisfying the FOC, then it is a local minimum if $\frac{1}{2}\Delta x^{\top}M_{x_{\star}}\Delta x > 0$ for all $\Delta x \in \mathcal{T}(x_{\star})$ satisfying $\Delta x \neq 0$.

- The SOC sufficient condition can also be written as $E^{\top}ME \succ 0$.

2.3 Equality and Inequality Constrained Optimization Problems

Consider the optimization problem $\begin{array}{ll} \min_x \ f(x) \\ \text{s.t.} \ h_i(x) = 0, \ i = 1, \dots, m, \\ g_j(x) \leq 0, \ j = 1, \dots, l. \end{array}$

Denote the dual variables associated with the equality constraints as $\lambda_1, \ldots, \lambda_m$. Similarly, denote the dual variables associated with the inequality constraints as μ_1, \ldots, μ_l . The Lagrangian of this problem is then

$$L(x,\lambda,\mu) \coloneqq f(x) + \sum_{i=1}^{m} \lambda_i h_i(x) + \sum_{j=1}^{l} \mu_j g_j(x).$$

- FOC: If x_{\star} is a regular point and a local minimum, then there exist Lagrangian multipliers $\lambda_{1\star}, \ldots, \lambda_{m\star}$ and $\mu_{1\star}, \ldots, \mu_{l\star}$ that makes the following holds true:
 - 1. **Primal Feasibility**: $h_i(x_\star) = 0$ for all $i = 1, \ldots, m$ and $g_j(x_\star) \le 0$ for all $j = 1, \ldots, l$;
 - 2. **Dual Feasibility**: $\mu_{j\star} \ge 0$ for all $j = 1, \ldots l$;
 - 3. Lagrangian Stationarity: $\nabla f(x_{\star}) + \sum_{i=1}^{m} \lambda_{i\star} \nabla h_i(x_{\star}) + \sum_{j=1}^{l} \mu_{j\star} \nabla g_j(x_{\star}) = 0;$
 - 4. Complementary Slackness: $\mu_{j\star} \cdot g_j(x_{\star}) = 0$ for all $j = 1, \ldots l$.

These conditions are called the Karush–Kuhn–Tucker (KKT) conditions.

• SOC necessary: If x_{\star} is a regular point and a local minimum, then $E^{\top}ME \succeq 0$, where

$$M \coloneqq \nabla^2 f(x_\star) + \sum_{i=1}^m \lambda_{i\star} \nabla^2 h_i(x_\star) + \sum_{j=1}^l \mu_{j\star} \nabla^2 g_j(x_\star)$$

is the Hessian of the Lagrangian w.r.t. x, and E is the tangent plane basis matrix defined the same as in Section 2.2.

• SOC sufficient: If x_{\star} is a regular point satisfying the FOC and is non-degenerate, then it is a local minimum if $E^{\top}ME \succ 0$.

- Non-degeneracy: x_{\star} is degenerate if there exists some j such that $\mu_{j\star} = g_j(x_{\star}) = 0$.

• For convex optimization problems, the KKT conditions can be used to find the global optima.

3 Sensitivity

If we compare the optimization problem

$$\min_{x} f(x) \text{ s. t. } h_i(x) = 0, \ g_j(x) \le 0 \tag{1}$$

with the problem that has perturbed constraints

$$\min_{x} f(x) \text{ s. t. } h_i(x) = \epsilon_i, \ g_j(x) \le \bar{\epsilon}_j$$
(2)

where each ϵ_i and $\bar{\epsilon_j}$ is a small number, then the optimal objective value of (2) f_{ϵ} can be approximated by

$$f_{\epsilon} \approx f_{\star} - \sum_{i} \lambda_i \epsilon_i - \sum_{j} \mu_j \bar{\epsilon}_j,$$

where f_{\star} is the optimal objective value of (1), and λ_i and μ_j are the Lagrangian multipliers of (1).