IEOR 160: Nonlinear and Discrete Optimization Convex Sets and Convex Functions

Yatong Bai

February 6, 2024

This is a summarization of Professor Javad Lavaei's IEOR 160 lecture notes.

1 Convex Sets

- Affine combination: $\left\{\sum_{i=1}^{k} \alpha_i x_i : \sum_{i=1}^{k} \alpha_i = 1\right\}$.
- Convex combination: $\left\{\sum_{i=1}^{k} \alpha_i x_i : \sum_{i=1}^{k} \alpha_i = 1, \alpha_i \ge 0, \forall i \right\}.$
- A set is affine if for every k points in the set, their affine combination is in the set.
 - A hyperplane is an affine set, but a half-space is not.
- A set is convex if for every k points in the set, their convex combination is in the set.
 - A polyhedron $\{x: a_i^{\top}x \leq b_i, c_j^{\top}x = d, \forall i, j\}$ is a convex set.
 - Norm balls and half-spaces are convex.
 - The set of PD matrices is convex, and the set of PSD matrices is also convex.
- Convex hull of a set is the smallest convex set containing the set. This can be found by obtaining the convex combination of any k points in the set.
- Operations that preserve convexity:
 - The intersection of convex sets is convex (note that the union of convex sets may not be convex).
 - Affine transformation: consider a convex set S and an affine function $f : \mathbb{R}^n \to \mathbb{R}^m$. The set $\bar{S} := \{f(x) : x \in S\}$ is convex.
 - The projections of a convex set are convex.

2 Convex Functions

- A function $f : \mathbb{R}^n \to \mathbb{R}$ is convex if and only if its domain is a convex set and $f(\alpha x + (1-\alpha)y) \le \alpha f(x) + (1-\alpha)f(y)$.
 - This is the zeroth-order condition for convexity.

- Replacing \leq with < gives the definition of strict convexity.
- Thus, the set defined by $\{x : f(x) \leq 0\}$, where f is a convex function, is a convex set.
- Convexity does not imply continuity.
 - Example: consider an end point \tilde{x} of dom f. f can still be convex if it "jumps up" at \tilde{x} .
 - The discontinuity should happen only on the boundaries.
- First-order convexity condition: $f(y) + \nabla f(y)^{\top}(x-y) \leq f(x)$ for all $x, y \in \text{dom} f$ (replace with < for strict convexity).
- Second-order convexity condition: f is convex if and only if $\nabla^2 f(x) \succeq 0$ for all $x \in \text{dom} f$.
 - If $\nabla^2 f(x) \succ 0$ for all $x \in \text{dom} f$, then f is strictly convex. The reverse direction may not hold (e.g., $f(x) = x^4$).
- Some example convex functions:
 - $-f(x) = e^{ax}.$
 - $-f(x) = x^a$ where $a \ge 1$ or $a \le 0$ on \mathbb{R}_{++} .
 - $f(x) = -\log(x)$ on \mathbb{R}_{++} .
 - Any ℓ_p form function $f(x) = ||x||_p$.
- Some properties of convex functions:
 - The point-wise maximum of a set of convex functions is convex.
 - If f(x) is convex, then g(x) = f(Ax + b) is also convex.
 - $-f(x) := \sum_{i=1}^{k} \alpha_i f_i(x)$ for $a_i \ge 0$ is convex if f_i is convex for all i.

3 Convex Optimization Problems

- Consider an optimization problem $\min_x f(x)$ subject to $x \in \mathcal{X}$. This problem is convex when
 - -f is a convex function;
 - \mathcal{X} is a convex set.
- Consider an optimization problem $\min_x f(x)$ subject to $g_i(x) \leq 0$ for all i and $h_j(x) = 0$ for all j. This problem is convex when
 - -f is a convex function;
 - $-g_i$ is a convex function for each i;
 - $-h_i$ is an *affine* function for each j.
- For a convex optimization problem, all local solutions are global.