IEOR 160: Nonlinear and Discrete Optimization Convex Sets and Convex Functions

Yatong Bai

February 6, 2024

This is a summarization of Professor Javad Lavaei's IEOR 160 lecture notes.

1 Convex Sets

- Affine combination: $\left\{\sum_{i=1}^{k} \alpha_{i} x_{i}: \sum_{i=1}^{k} \alpha_{i}=1\right\}$.
- Convex combination: $\left\{\sum_{i=1}^{k} \alpha_{i} x_{i}: \sum_{i=1}^{k} \alpha_{i}=1, \alpha_{i} \geq 0, \forall i\right\}$.
- A set is affine if for every k points in the set, their affine combination is in the set.
- A hyperplane is an affine set, but a half-space is not.
- A set is convex if for every k points in the set, their convex combination is in the set.
- A polyhedron $\left\{x: a_{i}^{\top} x \leq b_{i}, c_{j}^{\top} x=d, \forall i, j\right\}$ is a convex set.
- Norm balls and half-spaces are convex.
- The set of PD matrices is convex, and the set of PSD matrices is also convex.
- Convex hull of a set is the smallest convex set containing the set. This can be found by obtaining the convex combination of any k points in the set.
- Operations that preserve convexity:
- The intersection of convex sets is convex (note that the union of convex sets may not be convex).
- Affine transformation: consider a convex set \mathcal{S} and an affine function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$. The set $\overline{\mathcal{S}}:=\{f(x): x \in \mathcal{S}\}$ is convex.
- The projections of a convex set are convex.

2 Convex Functions

- A function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is convex if and only if its domain is a convex set and $f(\alpha x+(1-\alpha) y) \leq$ $\alpha f(x)+(1-\alpha) f(y)$.
- This is the zeroth-order condition for convexity.
- Replacing \leq with $<$ gives the definition of strict convexity.
- Thus, the set defined by $\{x: f(x) \leq 0\}$, where f is a convex function, is a convex set.
- Convexity does not imply continuity.
- Example: consider an end point \tilde{x} of $\operatorname{dom} f . f$ can still be convex if it "jumps up" at \tilde{x}.
- The discontinuity should happen only on the boundaries.
- First-order convexity condition: $f(y)+\nabla f(y)^{\top}(x-y) \leq f(x)$ for all $x, y \in \operatorname{dom} f$ (replace with $<$ for strict convexity).
- Second-order convexity condition: f is convex if and only if $\nabla^{2} f(x) \succeq 0$ for all $x \in \operatorname{dom} f$.
- If $\nabla^{2} f(x) \succ 0$ for all $x \in \operatorname{dom} f$, then f is strictly convex. The reverse direction may not hold (e.g., $f(x)=x^{4}$).
- Some example convex functions:
$-f(x)=e^{a x}$.
- $f(x)=x^{a}$ where $a \geq 1$ or $a \leq 0$ on \mathbb{R}_{++}.
$-f(x)=-\log (x)$ on \mathbb{R}_{++}.
- Any ℓ_{p} form function $f(x)=\|x\|_{p}$.
- Some properties of convex functions:
- The point-wise maximum of a set of convex functions is convex.
- If $f(x)$ is convex, then $g(x)=f(A x+b)$ is also convex.
$-f(x):=\sum_{i=1}^{k} \alpha_{i} f_{i}(x)$ for $a_{i} \geq 0$ is convex if f_{i} is convex for all i.

3 Convex Optimization Problems

- Consider an optimization problem $\min _{x} f(x)$ subject to $x \in \mathcal{X}$. This problem is convex when
- f is a convex function;
- \mathcal{X} is a convex set.
- Consider an optimization problem $\min _{x} f(x)$ subject to $g_{i}(x) \leq 0$ for all i and $h_{j}(x)=0$ for all j. This problem is convex when
- f is a convex function;
- g_{i} is a convex function for each i;
- h_{i} is an affine function for each j.
- For a convex optimization problem, all local solutions are global.

